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Foreword

The most important advances made in ferromagnetism in the years since
the last war have been in the field of magnetic oxides. Their development into
useful materials was initiated by the work of the late J. L. Snoek. The rapid
expansion of technology, especially high-frequency engineering, has been
a great stimulus to research on ferromagnetic oxides. Conversely the im-
provement of the characteristics of these materials has made increasingly
refined applications possible. Much progress has been made towards the
development of a theoretical description of the magnetic properties of these
oxides. In this respect the work of L. Néel has been of fundamental impor-
tance. At the present time many of the properties of magnetic oxides are better
understood than the corresponding properties of metallic ferromagnetics.
For example the magnitude of the saturation magnetization of an oxide
with given chemical composition can be predicted far more accurately than
that of a metal or alloy.

The original literature in this new field is voluminous and readily acces-
sible (it is to be found for example in the proceedings of the numerous con-
ferences on magnetism of recent years). However, the authors felt that a defini-
te need exists for a book which treats the subject of ferrites on an intermediate
level. The term ferrites will be used to refer to all magnetic oxides containing
iron as major metallic component. This book represents an attempt to meet
this need and to provide readers in an informal way with an insight into
the basic properties of ferrites. The treatment is not exhaustive as regards
either the subject matter presented or the rigorousness of the theoretical devel-
opment of basic concepts. The selection of material and manner of presen-
tation have been governed by the special preferences and viewpoint of the
authors.

The reader will perceive that some emphasis has been placed on work
carried out in the Philips Laboratories. If history is not a sufficient justi-
fication for this fact, it may be recognized that the authors have first
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hand information about these particular investigations and thus should be
in a position to undertake a lively and penetrating discussion of them. A
thorough familiarity with the experimental details is of especial importance
since many properties of the ferrites strongly depend on their exact chemical
composition and microscopic physical structure. These factors in turn are
determined by the method of preparation.

The book is intended for all those who are actively interested in the
properties of ferromagnetic oxides. It is hoped that the arrangement of the
book will enable any member of this large group, whatever his line of
specialization, to find some chapters of special interest to him. The practical
c.g.s. system of units is employed, that is, the various parameters are
expressed in terms of cm, ampere, volt, oersted, gauss and erg. The authors
are indebted to many of their colleagues at Philips Research Laborato-
ries, for useful criticism and suggestions, in particular to Dr. E. W. Gorter
and Dr. G. H. Jonker. The manuscript has been translated into English by
Mr. G. E. Luton, whose pleasant cooperation the authors gratefully
acknowledge.

J. Smit H. P. J. Wijn.
May 1959
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CHAPTER 1

ON THE PROPERTIES AND THE ORIGIN
OF MAGNETIC FIELDS IN MATTER

§ 1. The Magnetic Field

A magnetic field is produced by electric currents. The magnetic field inside
a toroid or long solenoid is
0.4 7 ni

!

and zero outside it. The field H is here expressed in oersteds, the current i
in amperes and the length / in cm; # is the number of turns. For a circular
current i with area 4 the magnetic moment is defined as

w = 0.1id. (1.2)

This is because the magnetic field at a distance many times greater than
the radius of the circular current is equal to that of a mathematical dipole
with a magnitude given by (1.2). Multiplying the numerator and denominator
in (1.1) by 4 and then applying (1.2), we see that the field (1.1) can also be
expressed in the magnetic moment per turn u:

H =

(1.1)

np
= d — 1.3
H ™ v (1.3)

where ¥V is the volume of the solenoid.

In matter, atomic circular currents may occur. Their strength is character-
ized by the magnetization M, which is the magnetic moment per cm3. Accor-
ding to (1.3), then, matter can provide an extra contribution to the field of

Hmat = 4wM. (1.4)
One can also say that a magnetization M is equivalent to a number of
ampere turns

(”—i)mat — 10 M. (1.5)

- The field given by (1.4) is only an averaged field; in reality there will be con-
siderable fluctuations on an atomic scale. The total field arising from macro-
scopic currents (Ho) and microscopic currents together is called the induction
B, so that for a toroid the induction in matter is

B = Hy 4 4= M. (1.6)
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B is expressed in gauss, a unit which is exactly the same, however, as the
oersted.

The given derivation of (1.6) is valid only for a toroid or an infinitely long
bar. If we compare a finite piece of matter, for example, an ellipsoid, with
an infinitely long bar of the same cross-section (Fig. 1.1) we see that in the

Fig. 1.1. Magnetized rotational ellipsoid com-
pared with a magnetized bar of infinite length
(dashed). In the latter there are only internal lines
of force; with the ellipsoid the lines are closed
around it. The stray fields and the internal de-
magnetizing field (in the opposite direction to the

arrows) may also be assumed as originating from
the fictitious poles (+ and —) at the ends.

ellipsoid the field due to the (microscopic) “ampere turns™ of the rest of the
bar is missing. This field would undoubtedly have been in the direction of the
magnetization. On the other hand, the field outside the ellipsoid is not zero;
we find there the fields of the magnetic moments in the ellipsoid which now
are not cancelled out by those of the moments of the rest of the bar. The
lines of force around the ellipsoid are closed loops. Leaving aside the field
Ho, equation (1.6) would give B = 4= M in the ellipsoid and zero outside it,
and does not apply. We correct this equation by introducing an extra field
Hp. In matter, Hp is called the demagnetizing field, because it is usually
opposed to the magnetization; outside matter it is usually called the stray
field. In all we have

B= Ho+ Hp+ 4nM = H { 4=M. (1.7

Since the normal component of the induction, B, is equal at both sides
of each surface element (continuity of the magnetic flux) the normal compo-
nent of Hp makes at the edge of the specimen a jump of the magnitude
47M,. This makes it possible to compare Hp with the electrostatic field
arising from electric charges. The charges are here fictitious magnetic sur-
face charges of the magnitude

o =AM, (L.8)
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per cm?, where AMy is the jump in the normal component of the magnetiza-
tion (see Fig. 1.1). Positive and negative charges are called north and south
poles respectively, and they are always present in equal quantities. If the
magnetization is not uniform, poles also appear inside the specimen. Hp
makes no contribution to the integral of the tangential component of the
magnetic field along a closed curve:

§ Hpdl =0, (1.9)
because the contributions of the atomic circular currents are cancelled out

by those of 47 M in the integral of the total field along a closed path. For
the H field of (1.7) we may therefore write

¢ Hydl = 0.4wni (1.10)
where i is the enclosed macroscopic current.

5
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Fig. 1.2. Demagnetizing coefficient N/4x of ellipsoid of revolution along
the major axis (@) as a function of the ratio of the length of this axis
to that of the minor axis (c), for prolate ellipsoids (b = ¢, needle)
and oblate ellipsoids (@ = b, disc).
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It appears that only in a uniformly magnetized ellipsoid is Hp uniform

and equal to
Hpi=—NM. (1.11)

(The minus sign is used because Hp: is opposed to M.) In general, N will
differ in the three principal directions, and will be smallest along the major
axis, for there are then relatively fewer poles and moreover they lie farthest
apart. The three demagnetizing coefficients (Nz, Ny and N) of an ellipsoid
satisfy

N:c+ Ny+Nz=4ﬂ'. (1.12)
Some examples for special ellipsoids are:
sphere : Nz= Ny=N,=4x/3
infinitely long bar : Nz=Ny=2m N;=0

infinitely large flat plate: Nz = Ny =0 N; = 4m.

Fig. 1.2 shows for ellipsoids of revolution the demagnetizing coefficients
along the major axis (@) plotted as a function of the variable ratio of the
major to the minor axes (a/c) as derived by Osborn [Os 1].

A uniformly magnetized ring has no demagneti- 3
zing field. It has, however, if the ring is broken by
an air gap of width 8, which we assume to be ’
small compared with the thickness of the ring d
(see Fig. 1.3). Since B, is continuous, the field in
the narrow gap is uniform and equal to the induc-
tion B in the material. If no macroscopic currents
are present, it follows from (1.9) that

Hp(l— &)+ (Hp + 4 M)3 = 0,

According to(1.11) this corresponds to a demag-
netizing coefficient

Fig. 1.3. Ring interrupted
by an air gap.

Nringfdm = 8/ (8L ) (1.13)

2. Energy of the Magnetic Field

A change in the magnetic flux @ = [ B, d4 surrounded by a closed turn
gives rise to an e.m.f. in the winding equal to
e x 10-8 volt (21
e=— — Vo .
dr 2D
(B, is the normal component of B on an element d4 of a surface through
the winding.)
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The presence of a magnetic field represents a certain quantity of energy,
for work is performed in building it up with the aid of currents through
coils. The Lenz opposing forces, then, are caused precisely by the voltages
according to (2.1). If the current through the coil is i amperes, the energy
supplied by the battery in the time 8¢ is eidt = 0.1i89D erg. The current i
excites the magnetic field Ho, and it may easily be seen in the case of the
solenoid, for example, that the energy required per cm3 in order to raise
the induction in an arbitrary point by 8B is equal to

1
W =-—H, B, 2.2)
4

for which purpose the scalar product must be taken, i.e. the component
of 8B along Hp. The total change of energy is found by integrating (2.2)
over space. In the absence of matter, it follows that the total energy density
per cm? needed for building up the field is

1

W= _— Hi. @.3)
87

For the case of matter being present, 8B consists of
6B = 8Ho + 8Hp + 4nSM.

Since we are interested only in the total energy change, i.e. integrated
over the whole space, the term with 8Hp makes no contribution. This is a
consequence of the general law in vector analysis that

[ abdV =0 (VX))
where the vector a is divergence-free (no sources or sinks), i.e. if for each
closed surface _[ andA = 0, as holds for each B ficld, and where the vector
b is curl-free (no eddies), i.e. if for each closed curve [5;d/ = 0. According
to (1.9), every demagnetizing field fulfils this condition. As a consequence,
in (2.2) Ho may be replaced by the total field H. In our case, Hy is the diver-
gence-free vector (Ho = B in the absence of matter) and Hp is the curl-free
vector (see (1.9)). The work performed on matter by the current is therefore

$Waat = HooM. @.5)

By integrating to 8M in (2.5) we can calculate the total work that must
be performed to produce the magnetization. For this purpose we must
know the relation between Hp and M. Now, in the case of ferromagnetics
the value of M is not determined by Hp but, as we shall see in Chapter V,
by the field H which consists of Ho and Hp together. Thus

8Wmat = HSM — HpdM, 2:6)
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where H3M does not depend upon the shape but solely upon the material.
The last term of (2.6) is the demagnetizing energy. This can easily be
calculated for an ellipsoid, since Hp = —NM which, after integration, gives

Waem = 3NM?2 Q2.7

per cm3 of the ellipsoid. This energy therefore represents extra work to be
performed. A more general expression for the demagnetizing energy, which
also holds for arbitrary shapes, may be obtained by substituting (1/4m)
§(B— Ho— Hp) for 8M in the last term of (2.6). The terms with 8B and
8H, integrated over space make no contribution, according to (2.4), so
that there remains

1
Waem = — Hjp 2.8
87

which is comparable with (2.3). Equation (2.7) is valid for each point of
the ellipsoid, while (2.8) is valid for each point of the space and must be
integrated over it in order to find the total demagnetizing energy. The
total field energy is then given by an expression like (2.3) or (2.8) for the
field H.

We shall now consider the energy of a permanent magnetic dipole p in
a constant magnetic field H. When a magnetic moment aligns itself in a
magnetic field H, the work performed on the dipole, according to (2.5),
is Hu, where 8u is the change, due to rotation, in p. In this case, as with
the force of gravity for example, we can introduce a potential which is equal,
to within a constant, to the opposite of the work performed on the dipole
by the field during rotation of the vector. This then becomes

V= —uH @9

and is at minimum if w and H are parallel; this is the position of equilibrium
of the dipole.

§ 3. The Nature of Magnetic Moments

In § 1 we calculated the magnetic field due to circular currents. We saw that
in the example of an in finitely long bar a field 4=M is directly associated
with a magnetic moment per unit volume M, so that the circular currents
on which this field is based can and must be omitted from the field equation
(1.10). In principle the magnetic moment can also be due to circulair currents
on a macroscopic scale, as it is, for instance, in the case of eddy currents or
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currents in a superconductor. In such cases it is not usually referred to as a
magnetic moment, the currents being retained explicitlx in the equatione from
which H can be determined. This separation is quite arbitrary, however.

The magnetic moments of interest to us come from the motion of the
electrons in their atomic orbits (diameter ~10-8 ¢cm) or from their spin
motion. It has been found that in ferromagnetics the magnetic moment
due to orbital motion is of the order of only 109 of the total moment, the
predominant part being due to spin. We shall therefore give a brief qualita-
tive semi-classical treatment of the origin of electron spin.

3.1 SPIN MOMENT

After the existence of electron spin was postulated by Uhlenbeck and Goud-
smit in 1925, in order to explain gas-discharge spectra, it was explained by
Dirac in 1928 with the aid of relativity theory and quantum mechanics.
In the theory of relativity the parameter pair E, (energy, time) is treated
in the same manner as the pair p,x (momentum, position); time is regarded
as a fourth dimension and energy is the momentum conjugated with it.
E,t should therefore occur in the equations in the same way as p-x. With
the classical energy equation for a particle with mass m in a potential field V'
2
E-2 _v_o
2m
this is not the case, for E occurs linearly and p quadratically. Dirac
solved the difficulty by postulating a new equation in which P also occurs
linearly, multiplied by a constant (really an operator). This constant can
only be the velocity of the particle, because v = dEiin/Op is still valid,
and is equal to the velocity of light ¢, so that, according to Dirac,
the observable values (eigenvalues of the operator) of each component of
the velocity can only be +c. Only one component can be “measured” at
the same time, the others remaining then undetermined (i.e. =c). This is an
unexpected result, but it leads directly to the existence of the spin. In order
to visualize the spin of an electron we must assume that the path of a particle
moving with a macroscopic velocity » (<c) is not straight, but is in some way
spiralized, so that, although the microscopic velocity is c, the drift velocity
is less. We thus have a translation plus a rotation, as shown schematically
in Fig. 3.1. In general the sense of the rotational motion will not be defined,
but with the application of a magnetic field the state with the one direc-
tion of rotation will have lower energy than the other and thus the
electron has an angular momentum J and associated with it a magnetic
moment x. The magnitude of the angular momentum may be estimated
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Fig. 3.1. Schematic representation of the
internal motion of an electron. The electron

v
(3 —
SN NN\ yd moves in its path with a velocity ¢, while
v the translation velocity is ». The spin is
< ( < ( in this case perpendicular to the plane of
the figure.

in the following way. According to the theory of relativity, the energy of
mass m, which actually moves with the velocity of light, is mc?. We have
seen that E is comparable with p. If, however, the momentum -+p occurs,
then —p is also possible. By analogy, therefore, a state with energy —mc?
should equally be possible. With this statement, Dirac established the
existence of a new state of the electron, which can be related to the positron,
a particle which, as was later demonstrated experimentally, has the same
mass as the electron but a charge of opposite sign. All that concerns us here
is that in the description of the electron there occur two energy levels, 4-mc2.
According to Bohr, it is possible to cause transitions from the one state
to the other by means of electromagnetic radiation of frequency », which
follows from

24x 10 cm

hv = Ey— Ep = 2mc? (3.1)

where # is Planck’s constant (6.625 X 10-27 erg sec). Now it is reasonable
to assume, because there are only two energy levels, that this » will also be
the frequency of the spin motion. A similar argument applies in the deriva-
tion of the precession frequency (see § 20). The angular momentum J is
equal to the mass times the square of the velocity, divided by the angular
frequency w = 2mv. The velocity here is ¢, so that, according to (3.1)

mc?
T 2me2lh
where i = h/2w, corresponding to S = } if J = AS.
The frequency v in (3.1) is very high (= 2x 1020/sec) and corresponds
to that of very hard gamma quanta (1 MeV). The average radius of the
orbit may be taken as

%) (3.2)

c h
Fgpin = — = S~ = 2X10_11 cm,
2mce

known as the Compton wavelength. Of course, as in the case of the Bohr
orbits in the hydrogen atom, we must not think here of a precise, sharp
orbit. The spin motion is a zero point motion, just as that of the electron
in the 1s state in the hydrogen atom. A difference is that in this lowest state
the motion can show angular momentum, due to the fact that there is
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always one component of the velocity which has the value c, so that the
“orbits” cannot have reversal points. The size of the electron itself is pro-
bably of the order of 1013 cm.

For a normal orbital motion the ratio y between the magnetic moment
and the angular momentum is equal to

Yorbit = e/2mec. (3.3)
For the spin motion, however, the relation is
Yepin = e/mc (34)

i.e. twice as large, as follows from Dirac’s theory. This may also be expressed
by the factor g in
y = g e[2me, (3.5)

g being 2 for the free spin and 1 for the orbital motion. Owing to the fact
that the charge e of the electron is negative, the magnetic moment and the
angular momentum are of opposite sign. No simple explanation can be given
for this deviating value of the g factor. The magnetic moment of the electron
is called the Bohr magneton, and is given by the equation

eh
=_— =19.27 x 102 . 3.6
pe = erg/gauss (3.6)
In § 19 we shall see that if spin and orbital motion are both present the g

factor may have an arbitrary value.

3.2. QUENCHING OF THE ORBITAL ANGULAR MOMENTUM

In most magnetic materials containg elements of the first group of transition
metals (Ti to Ni and also Cu) the resultant orbital moment of the electrons
is much smaller than the spin moment; we say then that the orbital moment
is “quenched”. This is a consequence of the electric fields at the position
of the ions, caused by the surrounding ions (known as the crystalline field).
Disregarding magnetic effects, a state (orbit) in which an electron travels
round in a certain sense has exactly the same energy as the same orbit with
the opposite sense of rotation, i.e. such a state with an angular momentum
is doubly degenerate (both states have the same energy). This degeneracy
cag be removed by the crystalline field. This field will be non-uniform; for
instance it is strongly positive in the direction of negatively charged neigh-
bouring ions (repulsion of the electron) and negative, or at least less positive,
in directions in between. The above-mentioned indeterminancy in orbital
motion can now be utilized in quantum mechanics by so superposing the
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two states as to produce two different orbits. In the one state the positions
of high potential will be avoided as much as possible (orbit @ in Fig. 3.2)
so that this state will have a lower energy than the original in this field.
The other state is then left with precisely the unfavourable positions (orbit b)
which results in an equally higher energy. The energy splitting 4E is of the
order of 10-12 erg. These new states can have no angular momentum.
If they had — still disregarding magnetic effects — the opposite direction
of motion would also be possible and we should have four states instead
of two.

This superposition of states has some resemblance with the combination
into one standing wave of two waves travelling in opposite directions. The
average charge distribution of the travelling waves is uniform, that of thestand-
ing wave is non-uniform. According to old quantum theory the electron
moving in a Bohr orbit is associated with a wave such that the length of the

E, —"'(i AE

Ne—2"Y___,

a

Fig. 3.2. Removal by the crystalline field of the orbital degeneracy caused by the four neg-
atively charged ions in the corners. Orbits a and b are turned exactly 45° with respec-
to each other. The resultant energy change is shown.

circumference of the closed orbit is equal to an integral number / of wave
lengths. The s state is additional and corresponds to / = 0, and should be regar-
ded as a zero point motion. The state with / = lisa pstate, / = 2is a dstate etc.
When two such waves propagating in opposite directions (opposite values of
angular momentum) are combined, a standing wave results with 2/ nodes.
It is clear that the energy of such a charge distribution will depend on its orién-
tationin a non-uniform crystal field with the proper symmetry. For instance a p
state does not combine with a field of cubic symmetry and the degeneracy is
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notremoved. A d’state, however, is affected by such a field. The five fold energy
level is split up into a doublet and a triplet. This partial degeneracy which still
existsis due to the fact that equivalent orbits lying in different cube planes have
equal energy. The degeneracy can be further removed by superimposed
crystal fields of lower symmetry. If this is not the case a partial occupation
of the triplet states by electrons leaves the lowest state of the total electronic
system degenerate, which may possess orbital angular momentum. This
situation occurs e.g. for divalent cobalt ions in octahedral sitesin compounds.
The states of the doublet are called non-magnetic and a combination of
them does not give rise to angular momentum,

3.3. SPIN-ORBIT INTERACTION

If magnetic effects are present a reversal of electron velocity will also change
the energy, and the above reasoning is no longer valid; even in the presence
of a crystalline field there can still be some orbital angular momentum.
Irrespective of the internal magnetic fields there is a magnetic effect due to
what is known as spin-orbit interaction, which again has a relativistic origin.
This interaction may be compared with the Lorentz force, which corresponds
to an electrical field strength

E = (vx H).10.-3 (3.7

This follows from Maxwell’s theory, or from the theory of relativity,
which states that in a coordinate system moving with a velocity v relative
to another system, an extra electrical field-strength prevails equal to (3.7),
if H is the magnetic field-strength in that other system. By analogy with this,
there exists in the one system a magnetic field-strength

H=— (vxE)[9.1012, (3.8)

if E is the electrical field-strength in the other system. The spin of the moving
electron is subject to this field, so that according to (2.9) the energy is

1
Ego. = 5 pox E)/9.1012, 3.9

to which a factor 1, the Thomas factor, is added for reasons similar to those
applying in the case of the g factor.

In general it may be assumed that the electrical potential of an atomic core
is mainly spherically-symmetrical. The electric field is then radially oriented,
so that

1 FE
Eoog — — — 9.1012
8.0. mer F(PX")/
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and hence there is in the atom an interaction between spin and orbital
moment of the form

Eso.=ALS. (3.10)

In this expression L is the orbital angular momentum and A is an energy
quantity which depends upon the ion concerned; for the transition metals
of the iron group it is of the order of 10-13 erg. (See Table 3.1) (1 erg =
5.036 x 1015 cm1),

TABLE 3.1
SPIN-ORBIT PARAMETER A FOR VARIOUS IONS OF THE IRON GROUP IN CM—1
ion Configuration A{em™)

Tl 3d 2Dy 154
viix 3d? 3F, 150
Crlx 343 4F3/2 87
CrlIMnIl 3d4 5Do 57
FellIMn!! 3d5 685/,

Fell 3d6 5Dy —100
Coll 3d7 4Fy) —180
Nilt 3d8 3F, —335
Cult 3d° 2Dsyp —852

The effect of an interaction (3.10) is that the original situation existing
before the splitting action of the crystalline field is restored to some extent,
so that the two states acquire a slight orbital moment again, amounting in
first approximation to -+(A/4E) k, where the original orbital moment was
or a multiple thereof (max. 2 for the iron group). In the same approximation
the spin orientation has not changed. If, therefore, only one of the states
(that with the lower energy) is occupied by an electron, there will be some
orbital moment present, the direction of which will depend upon the sign
of A. If both orbits are occupied by an electron, the orbital moments again
offset each other, so that the interaction (3.10) has no effect. This occurs
in filled shells, for example in Mn™ or Fe, in which all spins are parallel
and all orbits of the 3d shell are singly occupied. Intermingling no longer
has any effect in this case and the charge distribution is and remains spheri-
cally symmetrical.

The admixed orbital angular momentum is antiparallel to the spin mo-
ment (A > 0). For more than half-filled shells, the direction of the
resultant spin is determined by that of the half-filled shell. These do not,
however, contribute to the orbital momentum, so that the resultant orbital
momentum is parallel then to the resultant spin moment, corresponding
to an effective negative A
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3.4. ABSOLUTE MAGNITUDE OF THE ANGULAR MOMENTA

It was stated in § 3.1 that the actual velocity of the electron is ¢, corres-
ponding to an angular momentum of //2. Now this holds for each compo-
nent of the velocity (along three axes perpendicular to each other) but we
find that only one component can be measured at a time; the others re-
main indeterminate and are either --c or —c. This is a consequence of Heisen-
berg’s uncertainty principle. The square of the total velocity will not, there-
fore, be c2 but 3¢2. In the same way it appears, as a result of this, that each
component of the angular momentum is -+4/2, but that only one component
can be measured at one time. The square of the length of the angular mo-
mentum vector is then $A2, for S — 3:

Sz + Sy + 8.2 = S(S + 1) (3.11)

and not $2. The expression postulated in (3.11) has general validity, and applies
also to the spin moment of several coupled spins. Let there be 25 spins in
the z direction, then

Sﬂ?z = (Szl + sz + )2 = Sx% + Sx% + ... = ‘}-S

since, owing to the lack of correlation between the motion of the individual
spins, the double-product terms cancel out on the average. This applies
also to the y direction, while S,2 = S2, so that (3.11) follows here too. With
increasing S the indeterminancy becomes relatively less.

For similar reasons, an expression analogous to (3.11) applies also in the
case of pure orbital angular momenta:

L+ L3+ L} = L(L+ 1). (3.12)

Fig. 3.3. Possible orientations of an
angular momentum vector with
respect to an axis of quantization
(z axis).

The semi-integral numbers canoccur  S=3>
only for spin (S = 3/ represents the

case of three mutually parallel spins). L,S=2
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The values of S; or L, which can be determined by measurement, ascend in
steps of 1, for example S, S— 1, S— 2, ... (—S), thus totalling (25 + 1) or
(2L + 1) which corresponds to as many positions of the resultant vector
with respect to the z axis (see Fig. 3.3). The values of L are alwaysintegers.
The positions of the vectors as drawn are only average positions. In reality
there occurs as it were a zero point motion around them. Moreover, the
whole figure should be thought of as arbitrarily rotating around the z axis,



CHAPTER 11

THEORY OF FERROMAGNETISM

§ 4. Diamagnetism, Paramagnetism and Ferromagnetism

We have seen in Chapter I that a magnetization M can occur in matter as the
result of a more or less parallel alignment of the elementary magnets present
therein (electron orbits or electron spins). To produce this alignment it will
generally be necessary to apply a magnetic field H. The magnetization M,
when relatively small, is then often found to increase proportionally with

H according to M= yH, @.1)

where y is the (constant) susceptibility per cm3. In that case the induction
B is found from (1.7) to be

B=(1 4 4=y H = pH. “.2)

The constant u is called the permeability. In vacuo, y =0 and p = 1.

Depending upon the sign and the magnitude of y, three cases may be
distinguished:

a) Diamagnetism x < 0. For this phenomenon to occur there need be
no permanent dipoles present. The magnetic field induces a magnetic moment
that is opposed to H. This is really the most natural form of magnetism and .
occurs in principle in all substances. It is a direct consequence of one of
the most fundamental laws of nature, which states that any change gives
rise to forces which tend to counteract this change. This is here expressed
in Lenz’s law, according to which the magnetic flux contained by a closed
circuit tends to remain constant, since the induced electromotive force (2.1)
tries to change the current in such a way as to oppose the flux variation.
The value of y is usually of the order of —10-5; it is very small compared
with the other contributions to y for the materials with which we are con-
cerned here, and will therefore be disregarded.

b) Paramagnetism x > 0, but small (e.g. x < 10~2). In this case magnetic
moments which are already present (from electron orbits or spins) but which
have a random orientation, are to a slight extent aligned in the field, this
alignment being opposed by thermal agitation.

¢) Ferromagnetism. In the so-called ferromagnetic materials, just as in
paramagnetic materials, magnetic moments are also present, the difference
being, however, that the spins of neighbouring ions are already more or
less parallel. This does not mean that the whole specimen is necessarily
uniformly magnetized (i.e. any arbitrary piece of soft iron is no magnet),
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for if it were, the finite dimensions would give rise to large demagnetizing
forces (see Fig. 1.1). Internally, too, a great deal of demagnetization would
occur as a result of inhomogeneities and imperfections in the specimen. For
this reason it is usually more favourable energetically for the material
to subdivide itself magnetically into a large number of small regions, known
as Weiss domains, after Pierre Weiss, who first postulated their existence
in 1907. Within each domain, the size of which is of the order of 0.001 to
0.1 mm, the magnetization is uniform but the direction of this spontaneous
magnetization varies from one domain to another such that, in the absence
of an external field, there is usually no overall magnetization left.

The application of an external field of the order of 1 to 100 oersteds may
often be sufficient to remove the domain structure and to bring the material
practically to saturation. Thermal agitation has no effect on the magnetizing
process of these large conglomerates of spins. Thus the material has a high
permeability (maximum 106),

Another typical property of ferromagnetics is the occurrence of hysteresis,
i.e. each value of the field H is not associated with one specific value of the
induction B, the latter depending upon the previous history, that is upon
the fields which have been applied previously. For example, with a given field
the induction will be larger if the
material is first saturated in a strong
field in the direction of H than if the
material were first saturated in the
opposite direction. The graph which

/
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. (k gauss
shows the relation between B and H f

10

is known as the hysteresis loop ﬂ
(Fig. 4.1). This hysteresis is the I

result of irreversible magnetization é
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processes, which, since they cause
energy dissipation, adversely affect
the quality of coils in which these
materials are employed as cores. On

=2 3 |
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the other hand, the non-reversibility

also has its useful side, because itis /
due to this phenomenon that after 11_/,0
magnetization and subsequent reduc-

tion of the field to zero, there is A I
still some magnetization left, which -15

means that such a material has per-  gjg 4.1. Hysteresis loop of an annealed
manent magnet properties. iron specimen.
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§ 5. Exchange Interaction

The spontaneous magnetization of a Weiss domain is produced, as we have
seen in § 3.3, mainly by the magnetic moments of electron spins. However,
not all spins of the electrons of an atom or ion can be parallel. According to the
Pauli principle two electronsin a system cannot be in the same state. The state
of an electron is determined on the one hand by the orbit in which it moves,
and on the other by the direction of its spin. As was shown in § 3.4,
there exist only two states for the spin of one electron (S = }): parallel
or anti-parallel to a certain direction. Each orbit, then, can be occupied
by two electrons with opposite spin. In most atoms this is as far as possible
the case, for reasons of economy in energy, so that there is no or only one
uncompensated spin left. Exceptions are found in the transition metals, for
example in the iron group (VtoNi) where the five circular orbits from the
third shell (34 orbits) have equal energy. In these atoms it appears to be
more advantageous, owing to quantum mechanical reasons, for the spins of the
3d electrons to be parallel (one of the Hund rules). The maximum magnetic
moment per ion or atom is then 5 up (e.g. Mn™ or FeI™¥), For more than five
electrons in the 3d shell the resultant moment decreases again; for instance,
Coll in the 3d7 state has a moment of 3. 5. It may be said that, in consequence
of the Pauli principle, the mutual spin orientation of the electrons imposes
a restriction on their orbital motion. Since two electrons strongly repel each
other (Coulomb force) this will certainly affect the energy. Now, in the more
realistic case that the electron orbits are not separated, it appears that the
mutual spin orientation also partly determines the stationary states of a
system in which there are several electrons. As a result of the electrostatic
interaction between the electrons the energy will depend upon the mutual
orientation of the spins. The difference in energy of two electrons in a system
with anti-parallel and parallel spins is called the exchange energy J. More
generally, the interaction between two spin vectors S1 and S is given by

Eex. = —2J81.82 = —2J51S2 cos ¢, .1

where ¢ is the angle between .S1 and S. For J > 0 the parallel configu-
ration is more favourable and for J < O the state with opposite spins
has the lowest energy. The energy difference J can only differ from zero
when the electrons come into each others’ vicinity a great deal, that is to
say when the orbits “overlap”. Therefore we need only consider this effect
for electrons belonging to the same or to neighbouring atoms.

Hund’s rule is still usually applicable where the elements occur as ions
in ionic crystals (as in the oxides). In itself this fact would merely give rise
to strong paramagnetism. However, there also occurs an exchange interac-
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tion between the spins of neighbouring ions. An interaction of this nature
causes, for example, the formation of the hydrogen molecule and gives rise
to binding between atoms of many other elements, both in the molecular
form and in the solid state (valence bond). In this process the two inter-
acting electrons always have opposite spins, corresponding to a negative
exchange energy. In the ferromagnetic metals Fe, Co and Ni, on the other
hand, the exchange energy between the 3d electrons of neighbouring ions
is apparently positive. The conduction electrons, i.e. the electrons in the 4s
orbits, presumably have no or only little part in this. Thus, for the ferro-
magnetism of the elements in the iron group, only the 34 electrons are of
importance. In the rare earth elements corresponding conditions hold for
the 4f shell and Gd and Dy are ferromagnetic.

It is found that the spontaneous magnetization M, decreases with in-
creasing temperature and vanishes fairly suddenly above a certain tempera-
ture, the Curie temperature Tc.

§ 6. Statistical Theory of Magnetism

6.1. LANGEVIN’S THEORY OF PARAMAGNETISM

In order to explain the temperature-dependence of the spontaneous magne-
tization we shall first treat Langevin’s theory of paramagnetism, which was
put into a quantum mechanical form by Brillouin. According to statistical
mechanics the probability P that a system is in one of its possible states
with energy E; is equal to

e—Ei/ kT

i
where k is Boltzmann’s constant (k = 1.380 x 10-16 erg/°K) and T
is the absolute temperature. In (6.1) the sum of the probabilities over all
states is equal to unity. At the absolute zero point of temperature, then,
only the state with the lowest energy occurs, while at temperatures above
that point there is a chance for states with a higher energy to occur. At very
high temperatures all states have practically equal probability of occurring
(total disorder). For one spin in a magnetic field H there are two possible
states, parallel and antiparallel to the magnetic field. According to (2.9)
the energies (in this case potential energies) are —upH and -}-ugH respec-
tively. The average magnetic moment p in the direction of H can then be
found by multiplying the moments in the two directions by their probability
of occurrence (6.1) and subtracting one from the other:
e*gH [T _ g+ H [KT

<> = WR i aT IRT g gH T = pptanhupH/[kT. 6.2)

P , (6.1)
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For a substance with N independent spins per cm? such that the maximum
magnetization is My = Npp, we may therefore write

M/My = tanh upH/kT.

(6.3)

For high temperatures and weak fields the tanh in (6.3) can be replacéd
by its argument, and hence we may write for the paramagnetic suscepti-

bility

M/H = y =

peMo C
kT

T 6.4)

This is Curie’s law, which states that y~! is proportional to the absolute
temperature. The constant C is the Curie constant. This law is satisfied by
many paramagnetic substances. For higher fields and low temperatures
(6.4) is not valid (upH = kT for H = 1.5 x 104 oersteds and T = 1 °K)
and M approaches the saturation value My. This saturation effect has been
thoroughly investigated at low temperatures and high fields (H/T large)
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Fig. 6.1. Magnetic moment of some para-
magnetic salts as a function of H/T. The
solid lines are the theoretical Brillouin
functions, according to (6.7). (After Henry
[He 1]).
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by Henry [He 1] (see Fig. 6.1) for
various paramagnetic salts.

From (1.7) we might expect that H
in (6.2) would not be equal to the ex-
ternally applied field but equal to B.
However, it is not the average field
that must be taken, but the field pro-
duced at the position of theion by the
other ions. For a cubic crystal this
is, according to Lorentz, H + 47w M/3.
This correction can be neglected for
paramagnetic materials, except at
low temperatures (< 1 °K).

As a general rule the magnetic
moment m of an ion will originate
from more than one spin, which,
according to Hund’s rule, are paral-
lel, while there can also be some
orbital magnetism present; thus,
where § is still a good quantum
number (i.e. the value of S for an
ion can still be measured without
changing the orbital motion) the
magnetic moment m is given by

m = Sgus, 6.5)
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where S is the spin angular momentum of the ion (see § 3.4). The Landé
factor g is then given by

5 total magnetic moment

= 6.6
5 spin magnetic moment 6.6)
For pure spin magnetic moments, g = 2; deviations occur if there is also
some orbital magnetism present, in which case g = 1 (see § 3.1).

Where S > 4 the moment will then have, as discussed in § 3.4, 2S5 + 1)
possible orientations in a magnetic field, so that (6.2) must be generalized

and instead of (6.3) we find

28 +1 25 +1 1 a
M/My = Bs(@) = tanh ——— a— — cotanh — .
[ My s(a) cotan 2S a 25 cotan 75 6.7
where Bg is the Brillouin function and a is given by
a = SgupH/KT. 6.8)

The measured points given in Fig. 6.1 are those of salts with § = 3/2,
5/2 and 7/2 respectively, and fall on the Brillouin functions concerned. Here,
too, Curie’s law applies, with a Curie constant Cg which is equal to the
initial slope of the Bg curve and is given by
Nu2
Cs = gra(S + DMa/3k = 50—, (6.9)
p = usg VS(S + 1) (6.10)
is the absolute magnitude of the moment.

where

6.2. WEISS FIELD THEORY OF FERROMAGNETISM

If we keep all the spins in a ferromagnetic substance in one direction
by means of a strong magnetic field, and we then try to turn one spin, or
more generally the magnetic moment of one ion, out of that direction, this
will be opposed not only by the external magnetic field but also by the ex-
change interaction with the spins of neighbouring ions. It is as if there were
an extra field acting on each spin, the so-called Weiss field, Hw. It is not a
true field, for that can be produced only by circular currents, but is simply
a measure of the strength of the spin’s interaction with its neighbours. This
field is in general much stronger (2107 oersteds) than can normally be pro-
duced with coils etc. The classical dipole-dipole magnetic interaction is of
no consequence here, for this would only give fields of the order of 4=M,
which can be no more than =2.104 oersteds. The Weiss field depends
upon the magnitude of the average moment:

Hw = WM, (6.11)
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where W, the Weiss field constant, is assumed to be independent of M and T.
If the interaction is caused by the z nearest neighbours, then according to
(2.9) and (5.1) the energy change AE due to the reversal of one spin is

AE = gupWMy = 22JS, (6.12)

where My is the saturation moment at T = 0°K.

The temperature-dependence of the spontaneous magnetization can be
found by applying the Langevin theory from § 6.1. The field H in (6.8)
must then be replaced by H + Hw, where Hw is given by (6.11). For the
calculation of the spontaneous magnetization we have to put H =0.
Equation (6.7) then becomes an equation in M which, at a given temperature,
can have a solution, Mj, differing from zero. Thus, in Fig. 6.2, H/T is equal
to WM/T. All points for which the quotient of M and H/T is equal to T/W
lie on a straight line through the origin. The point where this intersects the
drawn curve gives the sought-for value of the spontaneous magnetization.
For low temperatures the straight line has a very small slope and in the
point of intersection, for example 4 in Fig. 6.2, Ms/M is almost equal to 1.
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Fiig. 6.2. Magnetic moment asa function of H/T. The points woere
this curve intersects the broken straight lines represent possible
spontaneous magnetizations at varous temperatures.

With rising temperature the point of intersection shifts towards B and C and
M; decreases. For that temperature where the point of intersection has
arrived at the origin, and has hence become a tangential point, M, is zero
and remains so at still higher temperatures. This Curie temperature T¢ is
given, for an arbitrary value of S, by

Tc = CsW = gus(S + 1)WMoy/3k, (6.13)
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as follows from (6.4) and (6.9) if the Weiss field Hy be inserted for H. Using
(6.12) we may write for (6.13):

Te = 28(S + 1)zJ/3k. 6.19

The Curie temperature, then, increases with increasing S for constant inter-
action per spin (SJ or W) and magnetization (Mo). That is to say, if each
ion has more than one uncompensated spin the Curie temperature is higher
when these spins are coupled in one ion (following Hund’s rule) than when
this is not the case. This may be readily understood from the fact that in
the latter case, the entropy is greater (more possibilities for orientation)
with vanishing spontaneous magnetization than with coupled spins, where
the maximum disorder has not yet been reached. The term —TS ($ is here
the entropy) in the free energy is thus larger at the same temperature, and
consequently the temperature (T¢) at which this large entropy can occur
(corresponding to M = 0) will be lower.

For the ferromagnetic metals of the iron group the Curie temperatures
and the saturation magnetizations at absolute zero are:

Fe Co Ni
Te 770 1131 358 °O
47 My 21,805 18,150 6,394 (gauss)

The curve M;/M, can now be plotted as a function of temperature, and is
given in Fig. 6.3 for several values of S. The experimental curves for the
metals iron and nickel are given, and it can be seen that they lie with good
approximation on the curve S = }; this should indicate that the spins of
the electrons inside one ion are in this case not coupled.

Fig. 6.3. Spontaneous magneti-
zation as a function of tempe-
rature on reduced scales. The
solid lines were found with the
Weiss field theory for the cases
S=12 and S =1. The ex-
perimental (dashed) curves for
iron and nickel agree with the
theoretical curve for S =1/3
(uncoupled spins).

— 7%
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Above the Curie point the Weiss field is zero and there should therefore
no longer be any parallel alignment of neighbouring ions. For T'> 0 it is
possible to enlarge M somewhat by an applied field; from the Weiss field
theory it follows that

IM[OH = —(T/WMPMPT (6.15)

According to the Weiss field theory the magnetization decreases only
very slowly at low temperatures. For example, for S = } the relative de-
crease of M;, where T/T¢ = 0.2, is only 2 10-4. At higher values of S the
decrease is faster (e.g. for S = 1 it amounts to 6x 10~4 at the same tempe-
rature). The reason for this faster decline of the magnetization at greater
values of S is that at Jow temperatures there occur only the state of the
ion with S; = S and to a slight extent the state with S; = §— 1. The energy
of this excited state is practically gugWMy. The deviation of the magneti-
zation from that in the total saturated state will then be proportional to:

aM
—Mo ~ (1/S)e—9#BWMo [ET, (6.16)

as follows from (6.7). (Compare 6.1)). The number of individual moments
is proportional to 1/S. Irrespective of this factor the magnetization thus
decreases in the same way for different values of S for increasing T. However,
at the same value of the reduced temperature the decrease of M/Mo will
then be greater for the higher value of S, for which according to (6.13)
the Curie temperature is highest. As this is manifest in the exponent of (6.16)
the 1/S term in (6.16) can not compensate for it at low temperatures.

At T = 0, dM,/dT = 0, which is not merely a property of the model but
follows from general thermodynamic considerations. Using (2.5) we may
write for the variation of the free energy F of the magnetic material

dF = —8dT 4 HdM.
From this F the free enthalpy G is found by adding a potential similar
to (2.9), ie.

G=F— HM, (6.17)
so that
dG = —SdT — MdH.

In the state of equilibrium G is minimum for constant 7 and H, as was
remarked after (2.9). By differentiation we get

@S/PH)r = OM/[0T)H. (6.18)
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According to Nernst, at T = 0 the entropy S is zero, irrespective of all
parameters and hence also of H; theiefore in (6.18), dS/oH =0 at T =0,
and accordingly d9M/dT = 0. Curie’s law, then, does not satisfy this, and
it can be said with certainty that, owing to the order of the magnetic mo-
ments, Curie’s law is not valid near T=0. How low the transition tempera-
ture is does not, of course, follow from such thermodynamic considerations.

6.3. PARAMAGNETISM ABOVE THE CURIE POINT

Although the spontaneous magnetization has vanished above the Curie
point, the interaction between the magnetic moments is nevertheless still
noticeable if a magnetic moment is induced by the external field. This in-
duced moment, too, gives rise to a Weiss field Hw of (6.11) which must be
added to the external field, so that M can now be found by substituting
H 4+ WM in (6.4) for H. With the aid of (6.13) we may therefore write

= ¢ (6.19)
X = T— TC. .
The Weiss field is then
Tc
Hy = H.
YT T TG

The susceptibility now becomes infinite at T'= T, indicating that a spon-
taneous magnetization sets in at this point (finite M for H = 0). The part
of the 1/ axis cut off by the extrapolated 1/x versus T straight line is equal
to —W.

6.4. CRITICISM OF THE WEISS FIELD THEORY

In the Weiss field theory the interaction of a single spin with its neighbour
was approximated by the interaction with a uniform field parallel to the
magnetization. In reality, at least if we still represent the interaction in this
way, such a field will vary from place to place in direction as well as in mag-
nitude, just as the magnetization does. At low temperatures, slowly varying
deviations in the spin orientation take place, as follows from the rigorous
spin-wave theory applicable in that region, which we shall discuss in more
detail in § 22.3. The exchange energy per reversed spin is, according to the
spin-wave theory, much smaller than 2zJS and for long-wave interferences
is given by:

Eox = 2 JS a?k2, 6.20)

where a is the lattice constant and k the magnitude of the wave vector k =
2w /A. For k = 0 it costs no energy to reverse a spin. The entire uniform
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magnetization is turned through a small angle out of the direction of the
field, so that all spins remain mutually parallel. For a small value of k the
angle between the neighbouring spins (proportional to ak) is very small;
the exchange energy (5.1) is therefore very little increased, the increase being
in first approximation proportional to the square of the angle of deviation
(oca??) in agreement with (6.20) (cos ¢ =1 — 1¢2). These low energy
states can thus readily be excited at low temperatures (cf. (6.1)) so that the
magnetization decreases much more rapidly than follows from the Weiss
theory (6.16). The theory gives for this case:

M= Mo[l — (T/TB)3/2], (6.21)
with
Tp = 21 S5/3J/k (6.22)

for the b.c.c. lattice. Equation (6.21) is the so-called Bloch T3%/2 law. For
S = } it follows from (6.14) that Tp = 1.7 T¢. Experimentally it appears
from the temperature-dependence of M, at low temperatures for Ni and
Fe that Tp =~ 4T, so that for T/T¢ = 0.2 the relative decrease in magne-
tization is 1072, as compared with 2x 10~4 according to the Weiss theory.
A T3/ dependence for the decrease in magnetization is found experimentally
at temperatures below approximately 0.3 T¢, where only the spin-wave
theory can be applicable.

However, the Weiss field theory is also incorrect at high temperatures

—_—— Weiss

&4

—_—T

Fig. 6.4. Spontancous magnetization M; and the reciprocal suscepti-
bility 1/x as a function of temperature. The broken curves are in accor-
dance with the Weiss field theory. Better approximations steadily reduce
the Curie point (cf. full curve) and make the 1/x versus T curve concave.
The latter has as asymptote the Curie-Weiss line.
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(in the region of the Curie point and higher). For example, the Weiss
theory predicts that for T > T¢, in the absence of an external field,
the spin order will have vanished completely. This would mean that
there would no longer be any correlation between the orientations of
two neighbouring spins. According to (5.1) and (6.1), however, there is
an e//kT greater chance of the spins being parallel than antiparallel. At the
Curie point this factor, according to (6.14), is et = 1.3 for a b.c.c. lattice.
The order, however, will only be noticeable over a short distance (short
range order) so that the magnetization will nevertheless disappear above
the Curie point, which can only exist if there is long range order. More
rigorous theories which deal in an approximate way with this correlation
also above the Curie point all arrive at the result that the Curie temperature
is lower than that given by (6.14). At very high temperatures (7> Tc) the
correlation between the orientations of neighbouring spins is negligible
and the Curie-Weiss straight line (6.19) is found as the asymptote of the
actual 1/y versus T curve. However, the 1/x versus T line is now curved
(see Fig. 6.4), the slope always being smaller than that of the asymptote
(6.19). An expression for this slope can be found from the differential of F:

~ (ol Gl

which can be written as:
o(1/%) — S

oT S (6.23)

This slope is therefore related to the decrease of the entropy as a result magne-
tization. Since in the Weiss field approximation the state for M = 0 is in
complete disorder, dS/d(M?) is constant as a function of temperature, and
hence also d(1/x)/dT. In reality the entropy is smaller owing to the cluster
formation and the change in it, caused by magnetization, will also be smaller
(see Fig. 6.5). The orientation of the clusters is to some extent comparable
with the orientation of the spin moments with greater S. Thus, the 1/x
versus T curve will always be above the Curie-Weiss line (6.19) and therefore
the Curie point will be lower. From the Bloch 732 law, it also follows
that the experimentally found Curie temperature is lower than that given
by (6.14). This curvature of the 1/y versus T line is actually found, and is
expressed as a difference between the ferromagnetic and the extrapolated
paramagnetic Curie temperature; this difference is, however, rather small
in most cases (20 to 30° for nickel). According to the theory the difference
could amount to several tens per cent of the Curie temperature. In practice,
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because the temperatures reached are not high enough, the true asymptote
will probably not be drawn in most instances, but one with too low a slope.
In fact, for nickel this slope agrees better with S =1 than with § = 4.
It is therefore dangerous to draw conclusions from the 1/y versus T curve.

—_— M2

Fig. 6.5. Entropy as a function of the square of the magneti-
zation. Curve (q) is according to Weiss field theory, whereas
for curve (b) correlations between the spin directions of
neighbouring ions have been taken into account.

§ 7. Caloric Properties
7.1. SPECIFIC HEAT

Owing to the decrease of M, the change of the total exchange energy with
the temperature is accompanied by an extra contribution to the specific
heat which, in the absence of external fields, is given in the Weiss approxi-
mation by

e = yWd(M,2)/dT. (7.1)

Just below the Curie temperature, ¢y is maximum and above it car is zero,
i.e. there occurs per spin a jump equal to

58(+ 1)
IRCENCE T
A finite jump of this kind in the specific heat is characteristic of what is
called a second order transition. Transitions such as from the solid to the

liquid state are first order transitions, where there occurs a finite transition
heat which must be supplied in an infinitely small temperature interval;

dey (1.2)
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in other words this corresponds to an infinitely high value of specific heat
at the transition point. In a first order transition there is a jump in the
entropy (a different phase) but not in a second order transition. Fig. 7.1
shows the specific heat curve of nickel in the region of T= T¢, in which
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Fig. 7.1. Specific heat of nickel in the region of the Curie
temperature. (After Moser [Mo 1]).

the magnetic contribution is in fairly good agreement with the theory.
The drop, however, is not so sudden as predicted by the Weiss field theory
according to which the magnetic contribution to the specific heat should be
zero above the Curie point. However, all order has not yet disappeared
above this point, as is manifest in the magnetic contribution to the
entropy change

ASy = cyATT. (1.3)

The “tail” of the specific heat curve is thus a measure of the short range
order above the Curie point.

7.2. MAGNETOCALORIC EFFECT

In all thermodynamic systems a change of temperature takes place during
an adiabatic change of an intensive parameter (potential, field). In the mag-
netic case an increase of the field reduces the magnetic entropy according to

A8y = QSPH)rAH.

In order to keep the total entropy constant the temperature is increased
(greater disorder), so that the entropy is increased (cf. (7.3)) by:

A4S = cyAT/T,
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where cn is the specific heat of the whole system, the external field remaining
constant. Making use of (6.18) we find for the temperature change:

AT = —(T/cr) (OM[dT)z4H, (7.4
I
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Fig. 7.2. Weiss field constant W for nickel, as determined
from the magnetocaloric effect. According to the simple

theory this should not be temperature-dependent. (After
Weiss et al. [We 1]).

which has the correct sign, since 9M/0T < 0. Owing to the use of thermo-
dynamic relations, equation (7.4) holds only for reversible changes, i.e. for
the change of the intrinsic magnetization and for those magpetization pro-
cesses which take place without hysteresis. For 4H = 10,000 oersteds the
temperature increase in the case of nickel and iron is of the order of 1 °K
at the Curie point, and 0.1 °K at T == 0.5 Tg.
Using (6.15) and applying the Weiss ficld theory, we can express T in
the accompanying change of M:
ATzzﬂf. AM=§—WZ aMz, a.5)
CH CH
so that W can be calculated from the experimental values for AM and 4T.
Experiments by Weiss er al. [We 1]1have demonstrated that AT is in fact
proportional to the change of the square of the magnetization, but that W
depends upon the temperature, especially in the region of T¢ (see Fig. 7.2).
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FERRIMAGNETISM

§ 8. Origin of Ferrimagnetism
8.1. INDIRECT EXCHANGE INTERACTION

In many ionic crystals, as in the majority of oxides to be discussed, the
exchange energy J between the spins of the neighbouring metal ions is found
to be negative, so that antiparalle] alignment gives the lowest energy. In
these substances, however, the metal ions are more or less separated by the
negatively charged antions, which, like the inert gases, have a closed shell
configuration in the ground state. For example, the electron structure of
the OH jon is like that of neon (2s22p6). The distance between the metal
ions is usually much too great for a direct exchange interaction to be possible,
since the extent of overlapping of the wave functions (orbitals) decreases
exponentially with distance. Various magnetic interaction mechanisms
have therefore been proposed [Va 1] in which the interlying anion plays
an essential part (super exchange). In the ground state with the inert gas
configuration the ion is inert and can produce no spin coupling. The sur-
rounding ions will, however, disturb this state somewhat, so that the extra
electrons will for a small part of the time belong to the neighbouring ions. In
quantum mechanics this is expressed by the principle of the superposition
of states. That is to say the state of the oxygen ion with the lowest energy
is a superposition of the ground state O and (for a small amount) the
state O7 and possibly that of the neutral O atom. In reality a whole variety

Ea ; Jeff

Fig. 8.1. Ground state and excited state of two metal ions, M1
and M3z, with an oxygen ion between them. The spin configura-
tions as drawn become intermingled, causing an extra reduction
of ground state energy; this does not occur if M; and M: have
parallel spins.
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of excited states will be mixed together, but we shall consider only those
which can be of use in explaining magnetic interaction. The electron sepa-
rated from the oxygen will return to one of the surrounding metal ions from
which it originally came (M in Fig. 8.1.). Within this metal ion there exists
a strong exchange interaction between the spins (Hund’s rule). The electron
can only be there if its spin has a given orientation with respect to the resul-
tant spin moment of the ion, and that depends upon the orbit in which the
electron in this excited state chooses to move. Where this (according to
Anderson) is the 34 orbit, the spin will be parallel to the resultant moment
if the shell was less than half occupied (five or less 3d electrons); otherwise
it must occupy an orbit with antiparallel spin. The electron under consi-
deration has come from a 2p oxygen orbit since this has the highest energy.
According to the Pauli principle, an orbit can contain two electrons with
opposite spins. The remaining, now unpaired, electron can interact with
another metal ion. There are also many other possibilities, but these excited
states will certainly be intermingled to a small extent. According to Ander-
son the second electron interacts with one of the metal ion electrons as in
the covalent bond or hydrogen molecular bond, in which the two associated
electrons constantly jump to and fro between the ions concerned and con-
tinually exchange their (antiparallel) spins. The latter will now only take
place to a more limited extent, since the spins at the position of the ions are
not free to orient themselves. In that case the energy gain will therefore
only be half as large.

Where these states are admixed and then cause a reduction of energy, it
means that an effective coupling has arisen between the spin moments of
the two metal ions. For if the moments had been parallel there would have
been no intermingling and hence no reduction of energy. This reduction of
energy occurs because, owing to the intermingling of excited states, the total
charge distribution can adapt itself with more economy of energy to the
potential occurring in the lattice. Accordingly we can again speak of an effec-
tive exchange energy J. In this case we may therefore expect positive ex-
change energy for the d! to d4 configuration and negative exchange energy
for d5 to d°.

One of the other possibilities, according to Anderson and Hasegawa
[An 1], is that the equivalent state, in which the other electron is transferred
to the other metal ion, also occurs simultaneously, leading to a reduction in
energy. This is only possible if the two metal ions have their resultant spin
moments antiparallel, so that in this case only a negative effective exchange
energy can exist (J < 0).

Which states are most strongly admixed will depend upon the distances
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Fig. 8.2. Diagram showing the orientation of the 2p
Q Zp orbit of the oxygen ion with respect to the metal ions,
" “ which is responsible for the indirect exchange.
G &

and the distribution of the surrounding ions. At all events, this interaction
will also largely depedend depend — for the same reasons as in the case of
direct interaction — upon the distance between the metal and oxygen ions,
and will rapidly diminish with increasing distance. Apart from this depen-
dence upon distance, there is also dependence upon direction to be considered.
The orbits of the oxygen electronsinquestion are, as we have seen, the stretched
2porbits. Since the interaction or the transition to the metal ions can take place
only if there is some overlap with the orbits in these ions, it will take place
most favourably if the oxygen ion lies centrally on the line connecting the
two metal ions, so that the axis of the p orbit under consideration can coin-
cide exactly with this line. If the angle M1-O-M: in Fig. 8.2. is in the region
of 90°, the interaction will be smaller. Such considerations are also frequent-
ly of importance for determining molecular configurations.
Experimentally, negative exchange energy is found in most cases, as in the
ferromagnetic oxides, although some cases of positive J have been reported.

8.2. SPIN ORDER

In the case of negative exchange interaction one would expect the spins of
neighbouring ions to be antiparallel, giving the sample a zero magnetic
moment. A simple two-dimensional model is shown in Fig. 8.3. The spin
order depends not only upon the crystalline structure but also upon the
ratios of the magnitudes of the interactions. The order occurring will be that
with the lowest energy. In Fig. 8.34), for example, the interaction between
the nearest neighbours 4 and B is stronger than that between the next nearest
neighbours 4 and C. In Fig. 8.3b) the converse is true. The latter casewill
be found, for example, when the joining antion lies in the centre of the square
elementary cell. Only the distances between cation and anion are important,
and not those between the metal ions. In Fig. 8.34), then, the bond 4-C
is the strongest because of the 180° angle between the connecting lines, al-
though the distance between the metal ions is greater. The spin order in the
MnO crystal is indicated in Fig. 8.4.

An antiferromagnetic order in which the elementary magnets are not purely
antiparallel occurs for example in Fig. 8.3.c) in the two-dimensional trigonal
lattice [Ya 1]. If a purely antiparallel order were to appear, each spin would
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at the most be surrounded by four antiparallel neighbours, the other two
being parallel. The exchange energy would then be 2J. According to (5.1)
the exchange energy in the situation as drawn, in which all spins make angles
of 120° with each other, will be —6J cos 120° = 3J, this being lower for
J< 0.

In the cases a) and b) in Fig. 8.3, the lattice can be split up into two sub-
lattices, each possessing uniform magnetization. In the case of ¢) there
are three.

If the sublattices are occupied by identical ions, the resultant moment
will be zero (antiferromagnetism). If the magnetic moments of both sublat-
tices differ in magnitude a net moment will result. This case is known as
ferrimagnetism, a name given to it by Néel [Ne 1].

In the cases with which we are concerned we can split the crystal lattice
into a number of sublattices; these are not, however, crystallographically
equivalent and moreover generally contain different numbers of ions
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Fig. 8.4. Antiferromagnetic
spin order in the cubic MnO
crystal. The nearest neigh-
bours but one have antipar-
allel spins.

Neen @

(e.g. two sublattices for the spinel structure and five for the magnetoplum-
bite structure). In most such cases it is then possible for each of them to have
uniform magnetization, so that it is not necessary to split up these sublattices
again for the magnetic spin order.

§ 9. Weiss Field Theory Applied to Ferrimagnetism

9.1. STRETCHED CONFIGURATION

Néel [Ne 1] has shown that the Weiss field theory can also be applied to
ferrimagnetism, albeit in a somewhat more complicated form. An ion of
a given sublattice is surrounded by a number of neighbours, some of which
belong to the same sublattice and some to others, so that the Weiss field
acting on this ion depends upon the magnetizations of all sublattices, ac-
cording to .

Hwy = j§1 Wiy M;. .1

The Weiss field coefficients Wy; are a measure of the strength of the exchange
interaction between the spins of an ion from the ith sublattice with that of an
ion from the jth sublattice. Thus, in the cases in which we are interested these
Wi values are negative. Since action is equal to reaction, Wy = Wj,.
Formula (5.10) is now valid for each sublattice, and H in (5.11) must be
augmented by the corresponding Weiss field from (9.1). In this way we ob-
tain 7 simultaneous equations, the unknown quantities being the magneti-
zations of the n sublattices. Here, too, the Curie point is found by substitut-
ing the Weiss fields from (9.1) for H in (5.7), which equation now holds for
each sublattice separately. For the i th sublattice this results in the equation:

ToMi— C‘él WyM; = 0, 9.2)
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where T has been replaced by the Curie temperature T¢, since the equation
applies to that only. These » linear, uniform equations in the magnetizations
M; of the sublattices cannot all be independent and they only give a solution
differing from zero for the sublattice magnetizations if the determinant of
the coefficients of My is zero. This gives an equation of the nth degree in
T¢ with n roots. For example, where n = 2:

’ (Wi — %) Wis
! - = 0. 9.3)
’ Wa1 (Was — a)

This does not mean that every sublattice has its own Curie temperature;
that is the same for all of them, for the one sublattice magnetization exists
solely by virtue of the others. It means only that there are n different M,
versus T curves for the resultant magnetization with » Curie points. Gener-
ally speaking, a number of these roots of the determinant equation will be
negative or imaginary, so that in these cases there will be no spontaneous
magnetization. Where there is more than one real, positive root for T¢
only the state with the highest Curie temperature will occur; the others have
a higher free energy and are unstable. For n = 2, we find according to (9.3)

Te =} [C1Wu + CeWas + V(C1Wi— CaWas)? -+ 4C1C W) 9.4)

For antiferromagnetism (both sublattices identical and Wiz < 0) it then
follows that

Tn = Ci(W11— W), ©.5)
in which case the transition point is re-
ferred to as the Néel point. y
In addition to the Weiss field coeffi- -
cients which indicate the interaction be- » 5
tween the spins associated with two dif-

ferent sublattices, equation (9.1) also
contains those for the interaction origi-
nating from spins in the same sublattice.
If this interaction is negative, which is A '
usually the case, it will try to upset the B”
parallel alignment of the spins within this . .

- . . . . Fig. 9.1. Ion configuration in a
sublattice. However, if the interaction ferrimagnetic crystal. The ion in the

with the other sublattices is stronger this entre is the non-magnetic anion;
will not happen. In Fig. 9.1 a schematic 4, B’ and B” are metal ions.
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representation is given of this situation, which is characteristic of ferri-
magnetism. The metal ion 4 belongs to the one lattice, and the two metal
ions B’ and B” belong to the other lattice (# = 2). There is thus an unequal
number of ions on the two lattices, so that in the case, for example, of
occupation by identical ions a net moment can result. The ion A4 is sepa-
rated from B’ and B" by an oxygen ion, which is responsible for the negative
interaction between 4 and B’ and B” as well as between B’ and B”
mutually. If the latter interaction is relatively weak, the A4-B interaction
produces the antiparallel alignment of both B’ and B” with 4, so that B’
and B” are parallel with each other. This applies as long as Jp is greater
than 2J5p'p"’, where J4p is the exchange energy between ion 4 and B’
or B”, and Jg's"’ that between B’ and B".

Proceeding from these principles, Néel developed his theory of ferrimag-
netism for two sublattices and determined the various possible forms of
the M versus T curves, giving a very satisfactory explanation of the magne-
tizations observed in ferrites with spinel structure, as well as of their para-
magnetic susceptibility above the Curie point. Depending upon the magnitude
of the sublattice magnetizations at T = 0 and the ratios of the magnitudes
of the interactions, the M, versus T curve can assume very different forms.
Although in general the sublattice magnetizations monotonically decrease
with increasing temperature, the form of the resultant magnetization curve
can be anomalous in view of the fact that it is obtained by subtraction of two
magnetizations. For example, the magnetization can pass through zero or
show a maximum as a function of temperature. The former case, which was
first reported by Gorter and Schulkes [Go 1] (Fig. 9.2), is one of the most
direct proofs of the existence of ferrimagnetism. Measurement of the satu-
ration moment would reveal no reversal of sign; this takes place only in
the measurement of the remanence established after the application and
return to zero of a strong field.

The occurrence of magnetization curves of this kind, which are typical
of ferrimagnetism, may be understood in the following way. Let the nega-
tive interaction between the two lattices be W4g = —n, while

Wia = aWap=—an Wpgp= BWsp = —FBn*) (9.6)

Take first the case that Mpo > M 49, with B8 Jarge and o small. The effective
Weiss field constant in the B lattice n(M 49/ M po — B) is then small at T = 0
compared with that in the A lattice n(Mpo/M 10— o). The magnetization

*) We have chosen a and 8 positive where the exchange interaction is negative, in con-
trast to the practice in most existing literature.
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Fig. 9.2. Magnetization versus temperature curve for
Lip.5Cry.55Fe1.2504. Curve Il represents the remanence and
curve I the spontaneous magnetization.
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in the B lattice therefore begins to decrease faster than that in the A lattice
(see Fig. 9.3a), as if the Curie point of the B lattice were lower than that
of the A4 lattice. At increasing temperatures both sublattice magnetizations
vanish, but at the same Curie point. Consequently the M 4 versus T curve
is more convex than that for Mp, and it is possible that below the Curie
point M4— Mg will be equal to zero. In order to explain a magnetization
curve with a maximum, a curve which is also found experimentally, we must
assume that B is small and « large. Then M4 decreases less rapidly than

M3 (Fig. 9.3b).

Mg

&4

Mg

&

a

Ma

b

Fig. 9.3. Examples of the cause of anomalous T/I, versus T curves.
In a) B is greater than a and in b) a is greater than f. The M,
curves represent the resultant magnetization.
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The above theory for n = 2 is applicable to the spinel lattice, for which
in fact it was originally developed (see Chapter VIII). For more than two
sublattices, such as occur in the hexagonal structures (Chapter IX) no such
simple statements can be made about the form of the M, versus T curves.

The existence of antiparallel- oriented magnetizations has been demon-
strated in various cases by slow-neutron diffraction [Sh 1]. Because of the
fact that these particles carry no charge they are able readily to penetrate
matter; owing to their spin they undergo in matter an extra interaction
with the ion cores, from which conversely the magnetic moment of the latter
can be determined in magnitude and direction.

9.2. TRIANGULAR CONFIGURATION

Where, in the case of Fig. 9.1, J4g< 2J5's", the parallel alignment of B’ and

B” is perturbed and the angle ¢ becomes such that cos ¢ = Jugp/2J'58".
This follows directly by minimizing the total exchange energy

Eeox = 2J4pcos ¢ + Jg'B"” cos 24.

An extension of the Weiss field theory for triangular configurations, as
indicated above, has been developed by Yafet and Kittel [Ya 1]. If, for
example, W44 < 0 (a > 0) then, where W45 = 0, an antiferromagnetic order
will occur in the 4 lattice, e.g. with two antiparallel sublattices. Analogous
to the case described above, this splitting into sublattices, depending upon
the relative magnitude of the interactions, will sometimes occur for W4g# 0,
but the two sublattice magnetizations will make an angle with each other
differing from 0° or 180°. The Weiss fields are then:

Hwa' =—n[aiMy + aaMy” + Mg] = —nf(a1 — a9)M4’ + a2M4 + Mp]
©.7

Hwa" =—nasM4' + axM4"’ + Mp| = —n[(a1 — a2)M4" + asM 4+ M|

Similar equations apply to the B lattice:

Hws' =—n[Mi+ BMp' + B2My"| = —n|[Ma+ Mg+ (B1— B2)ME']

9.8)
Hwg" =—n[M4+ B:Mp' + B1Mg"|=—n[Ma+ BMp - (B1— B2)M5"]
A splitting up of this kind will only occur where ag > a1, or B2 > B1. This is
also the reason for the angle formation: ions between which the greatest

negative interaction prevails are no longer in parallel alignment. It further
holds that

My +My, =My Mg + Mp' = Mp, (9.9)
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and for o and B from (9.6) that

a = $(a1 + a3) B =31+ B2 (.10)

The equations (9.9) are now essentially vector equations, like those for
the Weiss fields (9.7) and (9.8). It is evident that the magnetization of a
given sublattice must be parallel to the Weiss field concerned, as follows
also from minimization of the energy [Ya 1]. From the first equation of
(9.7) it follows then that the vector (aaM4 + Mp) is parallel to M,’, and
from the second equation it would follow that this vector would be parallel
to M4". Thus, if angle formation occurs in the 4 lattice, it necessarily holds
that

acM4y+ Mp=0 9.11)
Likewise for angle formation in the B lattice we may write
M4+ BMp=0. 9.12)

In general, o282 - 1, and therefore angle formation will only be able to
occur on one of the two sublattices at one time. In that case we may write
for the Weiss fields where, for example, angle formation occurs in the B
lattice,

Hwa=n (l— a)M 4 9.13)
Be

Hwg' = n(B2— B)M5E’,
while

M=(— 1. (9.14)
B2

In the A lattice, then, the Weiss field depends only upon M4, so that accord-
ing to (9.14) the M, versus T curve will have the same form as for normal
ferromagnetism. The angle ¢ (see Fig. 9.4) between the magnetizations of
the sublattices B’ or B” and A follows from

cos ¢ = Ma/2BeMp' < Ma/B2M3p, 9.15)

where M4 and Mp are determined by (9.13). If angle formation occurs,
then according to (9.12) the last term of (9.15) is equal to one.

For fixed ap and fixed M4 and Mg (e.g. at T = 0 and calculated without
angle formation) and variable B, configurations are obtained as shown
in Fig. 9.5. For B2 << M4/Mp, we see from (9.12) that no angle forma-
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P tion can occur in the Blattice. It does
occur for larger values of S, whereby
the angle ¢ from (9.15) becomes
steadily smaller. Where B2 = 1/as, it
follows from (9.11) and (9.12) that
angle formation is possible in both
sublattices; in that case the configu-
M { M2 ration becomes unstable and, at lar-

. . . ger values of By, it changes disconti-
Fig. 9.4. Triangular configuration of the nuously into an antiferromagnetic
sublattice magnetizations (left) together i )
with that of the Weiss fields on the - configuration (¢ jumps to zero). Up
lattice. to the point B2 = 1/az the Weiss
field Hw 4 from (9.13) is still positive,
since az > a. In Fig. 9.5 it can be seen that 1/az is greater than Ma/Mp,
but according to (9.11) this is precisely the condition with which we started,
namely that no angle formation should occur in the 4 lattice.

With increasing temperature the configuration can change. For instance,
if at T=0 the parallel configuration appears, because, B2 < Ma/Map,
but M 4 decreases faster with increasing temperature than Mg, a temperature
can be reached for which (9.12) is applicable, and therefore angle formation
occurs. However, this configuration cannot go over into the pure paramag-
netic one when the temperature is further increased, for (9.13) determines
separately the Curie point of the sublattices 4 and B’ or B”, i.e. Tca and
Tcw' or Tep” respectively. These will generally not be the same (they will
only be the same if fs~! — a = P2 — P1 with equal Curie constants of
the ions on both sublattices). If Tca > T¢g', then Mg would be zero
sooner than M, but in that case cos ¢ from (9.15) would be greater than
one, so that at lower temperature the stretched configuration occurs (¢ =0°).
On the other hand, if the Curie point of the A lattice is the lower, the A
lattice will become paramagnetic at this Curie point, while the B lattice
will be antiferromagnetic (¢ = 90°). This lattice does not become para-

Fig. 9.5. Spin configurations A
for variable Ba. Mg [ —f
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magnetic until above the Néel point, which is determined by the second
equation of (9.13). We have here, then, the special circumstance that there
is a Néel point above the Curie point. Thus, the case of both sublattices
being antiferromagnetic occurs only when azfe > 1.

The transition of the triangular configuration to the stretched one, or
vice versa, with variable temperature is comparable with the ferromagnetic-
paramagnetic transition at the Curie point. It is also a second order transi-
tion. The magnetization and entropy are continuous, but with increasing
temperature dM;/dT shows a positive jump, accompanied by a jump in
the specific heat. These jumps, however, have never yet been found
experimentally.

An example worked out by Lotgering [Lo 1] for the spinel lattice with
occupation by identical ions (M = 2M ) is given in Fig. 9.6, which shows
some possible forms of M versus T curves for variable « and B. In this case

a1 =0, az = 2a, B = 2/313, 52 = 4/3ﬁ’ (9-16)
so that the boundary line for ferrimagnetism is given by o« = §.

15
Fig. 9.6. Possible forms of magnetization-temperature curves for variable values of a
and B for the spinel lattice. (After Lotgering [Lo 1]).
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Although some of the spins are antiparallel in a ferrimagnetic substance
without angle formation at T =0, an applied field has nevertheless no
effect, i.e. (T =0) =0, because the exponents u(H + Hw)/kT of the
exponentials (6.1) do not change (<), at least as long as the effective
fields remain parallel to the sublattice magnetizations. That will be the case
if the applied field is smaller than the Weiss field. Where angle formation
occurs, this angle will be changed by an applied field, resulting in x # 0.
A simple calculation shows in the case of angle formation in the B lattice
that 1

X nB’ 9.17)
irrespective of the magnitude of the angle. This is the same susceptibility
that would be found for a purely antiferromagnetic B lattice. Measurement
of x at low temperatures above saturation should show whether angle for-
mation occurs,

§ 10. Paramagnetism above the Curie Point

The paramagnetic susceptibility above the Curie point can again be found
by expanding the Brillouin functions for a small argument as in (9.2), so
that in the absence of an applied field H we may write for each i:

T™;— G % WyM; = CiH. (10.1)

From this we can find M = Z M¢ For n > 1, the 1/x versus T curve is not

a straight line. For T> T¢ the curve has an asymptote which can readily
be found from (10.1) by first neglecting the Weiss field terms, so that M; =
C:H/T, and then filling in these values in the Weiss field terms. For the
asymptote we then find

lim 1/xy = — (T Tw), (10.2)
T—>00
where
C= iﬁ Ci (10.3)
=1

and T, is the asymptotic Curie temperature, which is given by

Ty = 121 Z CiWyCy/C. (10.4)
For antiferromagnetic interactions (ng < 0), Ty is negative. In general, T,
is a measure of the average magnitude of the exchange interaction. For
antiferromagnetism it follows that

To = Ci( W11 + Wha), (10.5)
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which may be compared with (9.5). Therefore, To = — Ty only if W13 = 0.
Formula (10.2) holds for antiferromagnetism not only asymptotically but
also strictly above the Néel point, as follows from (10.1). Thus for T > Tx
the 1/x versus T curve is straight, as it is in the case of a ferromagnetic
material. At T = T, then, yx is not infinite but is given by

1

x(Tw) W (10.6)
which is the same value as that resulting from the deflection of the antiparal-
lel magnetization vectors in (9.17). Below the transition point Tn the sus-
ceptibility depends upon the orientation of the sublattice magnetizations
with respect to the applied field. Roughly speaking in a cubic or polycry-
stalline substance two-thirds of the substance is perpendicularly oriented
and one third parallel. In the latter case a moment can only result if the ab-
solute magnitude of the sublattice magnetizations changes owing to the field.
At T = Tw, the susceptibility resulting from this process is apparently
equal to that in the perpendicular orientation, the latter being independent
of the temperature. At low temperature the parallel susceptibility be-
comes zero, so that in this case the resulting x is only two thirds of that at
T = Ty. Thus, the 1/x — T curve shows a dip at T = Ty, which is also
found experimentally, although the ratio x(0)/x(7T) differs in most cases
from 2/3, except for MnOQ.

For ferrimagnetism, T, is also negative in most cases, but 1/x becomes
zero at the Curie point; above the Curie point the 1/y versus T curve is
therefore convex towards the T axis. As in the ferromagnetic case (compare
§ 6.3) the Weiss fields immediately above the Curie point are large compared
with the applied field. As a result the ferrimagnetic state with antiparallel
oriented sublattices is then restored by the application of the field. With
increasing temperatures the magnetization of the antiparallel lattice decreases
and at a given temperature becomes zero. In the case of two sublattices this
temperature, for which My = 0, is according to (10.1) equal to

T(Mz = 0) = C1(Wh1— Wh2).

In the case of an antiferromagnetic this temperature coincides, according
to (9.5), exactly with Ty, which agrees with the fact that for T > Ty
the sublattice magnetizations in antiferromagnetic substances, too, are
parallel.

Fig. 10.1 shows the various forms of the 1/ y versus T curves for equal values
of C. The curves, for anti ferromagnetism and ferrimagnetism (above the
temperature of (10.7)) thus lie above the curve for pure paramagnetism be-
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Fig. 10.1. 1/x versus T
curves for J = 0 (paramag-
netism), J > 0 (ferromagne-
tism) and J < 0 (antiferro-
magnetism and ferrimagne-
tism).

cause the Weiss fields oppose the applied field. The curve for a ferrimagnetic
with a Néel point above the Curie point is given in Fig. 10.2.

The fact that the 1/y versus T curves for ferrimagnetics are concave and for
ferromagnetics and antiferromagnetics straight — atleast to the first approxi-
mation — follows also from more general thermodynamic considerations
with reference to (5.23). In this respect an antiferromagnetic does not differ
from a ferromagnetic. In the Weiss field approximation there is complete
disorder above the transition point. The establishment of a magnetization
caused by an applied field is then quite distinct, that is to say the dS/d(M?)
is independent of the temperature. In a ferrimagnetic, on the other hand,
the antiparallel order is restored just above T, when the field is applied. One
of the sublattice magnetizations is then larger than the resultant magneti-
zation. There arises, then, a relatively large order, i.e. dS/d(M?)is large, and
becomes smaller with increasing temperature where the Weiss fields decrease.

The Weiss field approximation as applied to ferrimagnetism is subject
to the same criticism as when it is applied to ferromagnetism. For instance,
Kaplan [Ka 1] has worked out that at low temperatures a Bloch 73/2 law,
analogous to (5.22), must also apply to the change of magnetization with
temperature. In this approximation the spins of neighbouring 4 and B
ions remain essentially antiparallel during thermal agitation and there-
fore the ratio M 4/M p should remain constant. The resultant magnetization

e

Fig. 10.2. 1/x versus T
curve for a ferrimagnetic
substance which, at T > T¢
becomes antiferromagnetic.
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therefore can only decrease with increasing temperature, also in the case of
Fig. 9.3b. Moreover, above the Curie point, short range order will persist.
The influence of this on the susceptibility has been calculated by Smart
[Sm 1] (Fig. 10.3). Here, again, the slope of the 1/x versus T curve is less
steep than the Weiss field approximation would have led one to expect. This
can again be explained with the aid of (5.23), for in consequence of the short-
range order, S will be smaller and hence dS/d(M?) also. In this case, too,
the result will be a lowering of the Curie point.

x (s)

(a)
Fig. 10.3. 1/x versus T curve for a T
ferrimagnetic substance (a) in accor-
dance with the classic Weiss field
approximation and (b) in accordance
with more exact methods. (After Smart
[Sm1].)




CHAPTER 1V

MAGNETIC ANISOTROPIES

§ 11. Description of Magnetic Anisotropies

11.1 MAGNETOCRYSTALLINE ANISOTROPY

So far we have discussed only the mutual orientation of the spins, and have
regarded the orientation in the crystal of the resultant magnetization or of
the sublattice magnetizations as arbitrary. A ferromagnetic substance in
which this were the case would be perfectly soft, that is it could be magnetized
by an infinitely small field. In reality the magnetization vector in a ferro-
magnetic specimen is always bound to a certain preferred direction and a
finite field is required to turn it from that direction. This behaviour is
described by an anisotropy energy, i.e. by the value of the magnetiza-
tion energy [ HdM from (2.5) required to turn the vector from a preferred
direction into a so-called difficult direction. This anisotropy energy can have
various causes and hence can also appear in various forms.

It has been found experimentally that the crystal anisotropy can be
described by the first two or three terms of an infinite power series in the
direction cosines of the magnetization vector with respect to the crystal
axes. It must have the symmetry of the crystal lattice. Thus, for cubic
crystals we have, for reasons of symmetry, the following expression to a
second approximation apart from a constant:

Fx = Ki(a12a22 4 as2ag? -+ a32012) + KyaiZas2ag? + ... (11.1)

in which the coordinate axes coincide with the crystal axes. For the three
principal directions this energy is given in Table 11.1.

TABLE 11.1

Energy conditions for a preferred direction of magnetization and anisotropy field for
cubic crystals

[100] [110] i1

1 1 1
F s - -
K 0 i K 3K1 + 59 K2
>0 4
Preferred direction if | K1 3 1 4 <— §Kz
>—sK2 0> K1 >—_ K K 1
’ o <— 2K
§ 2

4 4
H4 2K1/M, ~G K1 + 5 KM,

9

3 (100): —2K1/M,

110): (K14 K2)/M,
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The conditions given in this table for the appearance of a preferred di-
rection of magnetization are represented graphically in Fig. 11.1, in which

K; and K> are plotted along the
axes. On the semi-axis K3 =0, K»
> 0, i.e. on the boundary between
the [100] and the [110] domains the
magnetization vector is freely rota-
table in the cube planes in this
approximation. Such planes can be
called preferred planes of magneti-
zatjon.

An important factor in magneti-
zing processes is the stiffness with
which the magnetization is bound to
the preferred directions, defined as

(bZFK
c=\ e ) =0,

where 0 is the angle of rotation from
the position of equilibrium. For the
[100] and the [111] directions this
stiffness is isotropic and equal to

(11.2)

c[100] = 2K;

h
BN

[o0]
\

)

4
elll] = — 2 Ki — 5 Ka.

1
(] \/ Ky

Fig. 11.1. The preferred directions of the
magnetization vector in a cubic crystal for
variable anisotropy contants K1 and K2
from (11.1).

s 113
5 (11.3)

For the [110] direction the stiffness is anisotropic, and for deflections in

the cube plane we find:

caooy [110] = —2Ka,

and in the (110) plane:

caioy [110] = K1 + K.

(11.4)

These stiffnesses may be compared with that of the magnetic moment
M; in a field H, where the energy is equal to

= —HM, cos 0,

and 0 is the angle between H and M, In this case, c = HMs,, so that
(11.3) and (11.4) can also be expressed as anisotropy fields H4

HA = (1/M)o2Fg /06

which are included in table 11.1.

(11.5)
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The anisotropy energy in hexagonal crystals must have sixfold sym-
metry around the c axis; with the same approximation as (11.1), we may
therefore write for the energy

Fr = K;5in20 + Kssin40 + K3'sin66 4 K3sin60 cos 6(¢p + ) (11.6)

This enei'gy is now expressed, as is conventional, in the polar angles
and ¢, where the ¢ axis coincides with the z axis, so that

ayp=ysinfcos ¢, ax=sinfsingd, asz=cos.

The phase angle ¢ can be made zero for suitably chosen axes. The con-
stants K; and K» are not related to those in (11.1). Equation (11.6) can be
understood only by starting from the direction cosines, in which it must
be possible to express every analytical angular function (one might also
proceed from spherical harmonics, which would give the same result).
The energy can contain only even powers of a4, so that cos § and hence also
sin @ appear in (11.6) with even powers only. The factor sin®8 for the cos
6¢ term is due to the fact that cos 6¢ is a polynomial of the 6t degree in

a1 and as.

K2
/!
9\“90 ‘\
6-0°
|
\ \\\\ /(’
0 90° s
~—] i
\@0
4—'(\604 :

Fig. 11.2. The preferred directions of the
magnetization vector in a hexagonal cry-
stal for variable anisotropy constants Ki
and K3 from (11.6). For 6o = 90° the
basal plane is the preferred plane for the
magnetization, while in the sector for which
/=& a1 directions on the shell
2K,

of a cone have the lowest energy (preferred
cone).

sin fp =

If the term with K is predominant,
which is often the case, the preferred
direction for K1 > 0 is along the ¢
axis (6p = 0) and for Ky < 0 it is
perpendicular thereto, i.e. in the
basal plane (fp = 90°). If, in the
latter case, K3 = 0, the basal plane
is a preferred plane of magnetiza-
tion. Where K; is not predominant,
stable positions in arbitrary direct-
ions are possible, as follows by
minimizing (11.6). For the case where
only K3 and K. are taken into
consideration, the stable position
follows as

0p=0,if K1 + K2 > 0 and K1 >0,
whereas for
0< —K1< 2Kz
a stable position appears with
sin20p = —K;/2 Ks,
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having an energy —K32/4Kz, which in the domain under consideration
is lower than that for 8 = 0 or 6 = 90°. In this case each generatrix
of a cone of revolution is a preferred direction for the magnetization
vector. For all other ratios of K; and K3 the basal plane is the preferred
plane of magnetization. This is indicated in Fig. 11.2. In the region —2K»
> K1 > 0 metastable positions of M occur. According to measurements
by Sucksmith [Su 1] the preferred cone should occur in cobalt between
about 200° and 300°C.
For the anisotropy fields we find

=0 : Hi=2K/M,
6o = 90° : HY = —2(K1 + 2K2)/M; L7
sin 0y = —k HE = 2AK1/Kz) (K1 + 2K3)/ M
2K>
where Hj represents the effective field for rotations of the magnetic vector
in the direction in which only 0 changes, while Hj, given by

H# = 36/Ks| sin0o/Ms, (11.8)

represents that for rotations on the surface of the cone.

It appears from experiments that in most cases the crystal anisotropy is
very strongly dependent upon temperature. This can also be expressed in
terms of dependence upon the spontaneous magnetization. The experiments
for iron, for example, then give KiocM,19, and for nickel even K;jocM,29.
Van Vleck’s [Va 2] theory indicates a less strong dependence upon tempera-
ture. Zener [Ze 1], however, has evolved a classical theory from which this
strong temperature-dependence does follow. According to this, the uniaxial
anisotropy constants K; from (11.6) should vary more slowly proportionally
to M,3. Zener’s theory proceeds from the premise that M, changes with tem-
perature as a result of random variations in direction in small regions; the
length of the vector remains constant, all that changes being the projec-
tion in the direction of the bulk magnetization. This will be approximately
true at low temperatures, at which only slowly variable spin deviations occur
(spin waves of large wavelength). Zener assumed that the macroscopic
equations (11.1) or (11.6) remain valid for the direction variations due to
thermal agitation. Since M; is proportional to cos 6, fairly large variations
in direction can occur, and hence large changes in energy, without the mag-
netization changing appreciably. The change in crystal energy with tempera-
ture will also be greater the faster this energy changes with the angle, like
the K» terms in (11.1) and (11.6). Zener assumed a diffusion process (random
walk) for the local variations of the magnetization vector in direction, and
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calculated for the variation of the n**» power term in the crystal energy
(really the nt* spherical harmonic)

K(n) stn(n+1)/2 ,

i.e. with an exponent of 3, 10 and 21 for n = 2, 4 and 6 respectively. Keffer
[Ke 1] has shown that Van Vleck’s theory is better applicable at high
temperatures.

11.2. INDUCED UNIAXIAL ANISOTROPY IN CUBIC CRYSTALS

In many disordered alloys, and also in various ferrites with cubic crystal
structure, a uniaxial magnetic anisotropy can be brought about by subject-
ing the material to an annealing treatment in a magnetic field. A condition
for the occurrence of the anisotopy is that the ions in the crystal should exhibit
no complete ordering and that the Curie point should be sufficiently high
to allow the ion diffusion below that point to take place rapidly enough.
The fact that the ion diffusion takes place appears from the curve of the treat-
ment time plotted against temperature; from this curve an activation energy
can be derived of the order of 1 to 2 eV. The applied magnetic field need
be no stronger than is necessary to orient the magnetization at the tempera-
ture at which the treatment is carried out; increasing the field above this
value has no effect. Upon slow cooling in the field to room temperature
the high temperature state is then frozen-in, which manifests itself in a
preferred direction of magnetization.

The induced anisotropy energy in cubic crystals can be represented by
the formula:

Em = —F(012812 + a22B22 + 032f3?) +
—G(o1a2B1 B2 + a1a3B1Bs + azazPzfs), (11.9)

where o4 are the direction cosines of the magnetization during the measure-
ment and B; are the direction cosines of the magnetization during the mag-
netic annealing at elevated temperatures. For G = 2F the induced aniso-
tropy is independent of the direction of the annealing field with respect to
the crystal orientation, ie. it is of the form

Ep = Ky sin2 (6 — 6,) (11.10)

where 6 — 8, is the angle which the magnetization during the measure-
ment makes with the annealing field. This equation applies to polycrystalline
specimens.
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We have seen that an anisotropy of the form sin? 6 cannot exist in a cubic
crystal. The contributions of the interactions of the neighbouring atoms
around a given atom cancel each other out. This condition can be eliminated
by deformation of the crystal, as occurs with magnetostriction (§ 13.2).
Néel [Ne 2] and Taniguchi and Yamamoto [Ta 1] have pointed out that,
as regards the bonds, this cubic symmetry is also cancelled in cubic alloys
if anisotropy occurs in the number of bonds between similar atoms, for
example when the connecting lines between neighbouring atoms dissolved
in a diluted alloy are all, or for the greater part, parallel to a particular
direction. In that case a magnetic anisotropy may be expected of the form
E = K sinZ 6, in which the sign of X ¢an still be arbitrary. In alloys, @ is
the angle which the spin makes with the line connecting the atoms. The
magnitude of K is proportional to the number of pairs of neighbours, which,
for a disordered alloy, is proportional to x2, where x is the (low) concentration
of the foreign atoms. If the atoms are free to diffuse, as they are at elevated
temperatures, a specific spin direction will conversely have a preference
for that orientation of the pairs which reduces the energy. The probability
of a pair occurring with an axis which makes an angle 6, with the direction
of the magnetization is then proportional to

P(6) oc exp. —eg sin2 04 /kT = 1 — €q sin2 04 /kT (11.11)

where ¢, is the magnitude of the anisotropy energy per bond (<LkT).
If this configuration is frozen in, an axial magnetic anisotropy will be found
at low temperatures which is proportional to eser, where er is the magnitude
of the anisotropy at the temperature of the measurement. In general «,
and er have the same sign, so that, irrespective of the sign of ¢, a preferred
direction is in fact always found, i.e. F, G in (11.9) and K, in (11.10) are
positive. Néel brought the magnitude of ¢ into relation with the magnetos-
triction of cubic material and showed that ¢, converted per cm?3, is of the
order of magnitude of AE (see § 13.2). This may amount to 103— 109 erg/cm3.
corresponding to several cm~1 per bond. It can happen, depending upon
the crystal structure, that for a given orientation of the field during the heat
treatment all bonds will have the same orientation with respect to the field,
as for example for the bonds in a [111] direction in a simple cubic (s.c.)
lattice or in the [100] direction in a b.c.c. lattice. In that case the annealing
does not give rise to anisotropy. The term with F in (11.8) represents the
field-cooling energy for an s.c. lattice and that with G for a b.c.c. lattice;
for an f.c.c. lattice (11.8) will apply with G = 4 F. The above applies, then,
if it is assumed that the anisotropy axis of the magnetic energy coincides
with the line connecting similar neighbours.
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§ 12. Origin of Crystal Anisotropy
12.1. DIPOLE-DIPOLE INTERACTION

The classical interaction energy between two magnetic dipoles g1 and us
is given by

3(uar) (uer)

p (12.1)

142
E(1,2) =“r§‘ —

in which r indicates the distance apart of the dipoles. Where g3 and us are
parallel or antiparallel, (12.1) reduces to

pipe
r3

where 612 is the angle between the direction of the dipoles and the con-
necting line. The + sign applies to the parallel orientation and the — sign
to the antiparallel. For a crystal, (12.2) must be summated over all dipole
pairs. Because of the relatively slow decrease with distance of (12.2) the
interaction between all pairs must be taken into consideration. The total
dipole energy is therefore dependent upon the shape of the crystal. For a
uniformly magnetized sphere of a substance with a cubic crystalline structure,
(12.2) is exactly zero; this can readily be seen for a dipole in the centre point.
Over each shell of the sphere, << cos? 6 > = 1/3. The field A; acting on a
dipole /, in the direction of the dipole / is

E(1,2) = + (1 — 3 cos2 012) (12.2)

b =—2 L5 (13 cos? 0y), (12.3)
Ty

the potential (12.2) being of the form (2.9). The field /; of (12.3) is the sum

of the Lorentz field (see § 5.2) and the demagnetizing field. In a general

ellipsoid both are uniform. For the special case of a sphere these fields

exactly cancel each other out.

In non-cubic crystals, (12.1) will not be isotropic, even for a sphere, i.e.
it will depend upon the direction of magnetization. It can be said that the
Lorentz field is then anisotropic. The dipoles within a sphere having a radius
of a few atomic diameters now produce a resultant field at the site of the
dipole in the centre point. The contributions of dipoles at large distances
apart again cancel each other out, as for the sphere of a cubic substance.
Consider therefore the dipoles in a spherical shell the thickness of which is
at least equal to several times the lattice spacing, but still small compared
with the radius. The spherical shell then contains per unit solid angle an
equal number of dipoles at every part, so that irrespective of the structure
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the contribution to the field in the centre point is zero. The dipole energy
can be calculated by a method reported by Kornfeld (see Kittel [Ki 1]).
What interests us is the dependence of this energy upon the orientation of
the magnetization in a ferromagnetic material. Owing to the fact that (12.2)
is a quadratic form in cos 6, the resultant energy will also be only a quadratic
form of the direction cosines. The most general form of this dipole energy
is thus

3 3
Eaipole = El ng Ey aoy 12.9)

This energy can make a contribution to the Ki of (11.6) in hexagonal
crystals, in which then only Ess 7% 0, (¢ axis in the z direction); viz:
Es3 = —Kj.

In the case of a cubic ferromagnetic crystal, (12.4) cannot, for reasons of
symmetry, be anisotropic. It can, however, in the case of a cubic antiferro-
magnetic crystal. Apart from a slight deformation, which is discussed in
the next section, the ion order has cubic symmetry, but not necessarily
the spin order. This is the case for example in the MnO crystal (see Fig.
8.4) in which the spins in planes normal to the [111] direction are parallel,
as is found by neutron diffraction. In the case of MnO the energy (12.4)
for the spin configuration as drawn will have the form:

Eqip = 2 E12(a102 + a1as + a2a3), (12.5)

which has an extreme valuein the [111 ]direction (ellipsoid of revolution about
the [111] axis). The spin order in cubic ferrites with spinel structure also
has cubic symmetry, so that the dipole interaction cannot result in aniso-
tropy in these either.

So far we have given a purely classical treatment of the dipole energy
on the basis of equation (12.2). Quantum mechanically there is yet another
effect to be considered, since in consequence of the general expression (12.1)
for the dipole interaction some energy can be gained when the spins are not
in purely paralle]l alignment; this can happen when mingling takes place
with a state in which the component of the spin moment in the direction
of the total magnetization is smaller by an amount 4. For S = 1 this means
the state with opposite spin, so that the angular deviation may be consider-
able. For large values of S the angular deviation is relatively small. We are
concerned here then with a purely quantum mechanical effect. The inter-
mingling will differ for different orientations of the magnetization vector
with respect to the crystal axes, resulting in anisotropy of the energy. Al-
though usually much smaller, this is of the same form as that due to spin-
orbit interaction, which we shall now consider.
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12.2. SPIN-ORBIT INTERACTION

As we have seen in § 12.1, the classical dipole energy can only give a term
with sin? 8 in (11.6). The occurrence of anisotropy in cubic materials and
the additional terms in (11.6) must therefore be explained by spin-orbit
interaction, which was discussed in § 3.3. The result of this spin-orbit inter-
action is [Va 2] that the total orbital angular momentum is no longer
quenched and that the charge distribution will acquire an anisotropy de-
pending upon the direction of spin. This can contribute to the magnetic
anisotropy in two distinct ways.

(a) The indirect exchange depends upon the overlapping of the wave
functions (orbits) of the electrons of the anion and the metal ion. Thus, ow-
ing to spin-orbit interaction, this overlapping can vary as it makes spherical
charge clouds slightly ellipsoidal, and the extent to which it does so differs
with differing spin orientations. The energy difference 4E with a given excited
state (corresponding to the jumping of an electron from the dnion to the
metal ion) can vary in a similar way. This mechanism is described as aniso-
tropic exchange; for a substance with uniaxial anisotropy it is in the order
of magnitude per ion of J(A/4E)?, where J is the effective exchange energy.
It will be shown in § 20 that A/AE is approximately equal to the deviation
of the g factor from 2, so that K = J(g — 2)2. Usually, g — 2 = 0.1, so that
for T, = 1000 °K the constant K; from (11.5) should be of the order of
107 — 108 erg/cm3, which is rather large. Higher approximations yield
the next terms in the series expansion for the energy. It appears that subse-
quent terms should differ by a factor (A/4E)2, which is quite small. In prac-
tice a greater ratio is often observed. This may be due to the fact that 4Eisa
fluctuating quantity in inhomogeneous media, which favours the higher terms.

(b) One may also consider only the interaction of the metal ion in the
ground state with the crystalline field (see § 3.2), having due regard to spin-
orbit interaction. In that case the exchange interaction from the surrounding
ions is taken only indirectly into consideration, in order to ensure that the
magnetic moment of the ion is preferentially parallel to the bulk magneti-
zation. For the rest, the treatment is similar to that for a paramagnetic ion.
The mingling of states with an orbital angular momentum will depend, like
the energy, upon the orientation of the spin vector with respect to the
crystal axes. For the case that the ground state is non-degenerate, the result
is of the same order of magnitude as under (@), where J is replaced by
some energy splitting due to the crystalline field. Which of the mechanisms
(a) or (b) is more important, or which mode of description is the correct
one, is in general difficult to say.
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§ 13. Magnetostriction
13.1. VOLUME MAGNETOSTRICTION

The thermal expansion of a ferromagnetic substance shows a change in
slope at the Curie point (see Fig. 13.1) and at low temperatures the dimensions
of the body differ by a fraction 102 from those which it would have if it
had not become ferromagnetic; this appears from extrapolation of the curve
above the Curie temperature (curve (a) in Fig. 13.1). For a ferromagnetic
material with cubic crystal structure, this strain — which we shall for the
moment assume to be independent of the spin orientation — can only be
isotropic, that is to say it is purely a change of volume. In the case of hexa-
gonal ferromagnetics, for example, this need not be so, the strain then repre-
senting a change of volume plus a change of shape (e.g. greater strain along
the ¢ axis). In cubic antiferromagnetics, in which the magnetic ordering is
non-cubic (e.g. as in MnO), a change of shape (trigonal deformation)
also occurs, which is likewise of the order of magnitude of 10-3,

The cause of the expansion anomaly is to be found in the dependence of
the exchange energy upon interatomic spacing; this appears with metals,
for example, in the so-called Slater curve (see Fig. 13.2), in which the exchange
energy is plotted as a function of the ratio of inter-ionic distance to the shell
diameter of the electrons responsible for ferromagnetism (the 3d shell for
the iron group). This curve shows a maximum; for small distances the inter-
action is negative. In a material for which the representative point lies to
the left of the maximum, additional expansion will occur below the Curie
point, since in that case the exchange energy willincrease (lowering of energy).
Fig. 12.1, then, applies to a material with relatively large interatomic spacing.
The change of exchange energy with interatomic distance dJ/da can be
found by minimizing the total energy:

E= NS @ 102

a ap

Fig. 13.1. Anomalous thermal expansion
of ferromagnetics. The broken curve
is for the hypothetical paramagnetic sub-
stance, while (b) would apply if the magne-
tization were to remain equal to that at
T =0, (M= Moj).
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Fig. 13.2. Dependence of
J exchange energy upon the
ratio of the inter-ionic spa-
cing and the diameter of the
aFe Ni shell of the magnetic elec-
1
Gd trons.

J7Fe

— .
Mn, /Dat

where N is the number of atoms per cm3, ao the interatomic distance for
M, = 0 and c the elastic constant. We then find

a—ao__NaodJ

ao ¢ da
—a
For 2% _ 10-3, gp — 3% 10-8 cm, ¢ = 1012 dyne/cm? and J = 3x 10-14
Qo
erg, it follows that d7 _ J

da—  3x10¥
which is of the right order of magnitude.

If a ferromagnetic substance at T > 0 °K is subjected to a very strong
field, a small change of volume occurs, which is known as volume magneto-
striction. The strong field causes a slight increase in the intrinsic magne-
tization (cf. (6.15)), so that in Fig. 12.1 the curve sags in the direction of
curve (b), which would apply if the spontaneous magnetization were to
remain constant as a function of temperature. However, the change of volu-
me (and, in non-cubic ferromagnetics, also the change of shape) is relatively
small, owing to d9M/dH being so small. There must therefore be a relation
between the position on the Slater curve, the expansion anomaly and the
volume magnetostriction [Sh 2]. This relation is satisfied in the case of the
metals iron, cobalt and nickel. In gadolinium the magnetic 4f shell lies well
inside the atom, and therefore the point in question should lie to the right of
the maximum on the Slater curve. However, the expansion anomaly has
the opposite sign, and an expansion occurs below the Curie point [Ba 4].
For alloys, too, this relation is not always satisfied. This may be due to the
fact that there are several interactions, which do not always contribute in
the same ratio for variations in temperature and the application of a field.

The indirect exchange energy, too, may be expected to be strongly depen-
dent upon distance. Here too, then, volume magnetostriction and expansion
anomalies may be expected.
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13.2. LINEAR MAGNETOSTRICTION

Experiments have shown that the deformation discussed in 13.1 depends
furthermore upon the direction of the magnetization. For a cubic crystal
magnetized in the direction given by the direction cosines aj, az and as
(defined with respect to the cube axes) this deformation, expressed in strain
components ¢4(i,j = x,y,z) becomes in first approximation

€z = 3[3 Ar00(@12—1/3), eyy = 3/; A10o(as2 — 1/3), €22 = 3/2 Ar00(as® — f3), (13.1)
€oy = 3y M110102, €z = 3/5 A110203, €z = 3/, A110301.

The extra terms —1/3 make the total change of volume nil (trace of the matrix
is zero). The factors 3/2 ensure that the strain in the direction of magnetiza-
tion with respect to the non-magnetized state (a;2 = ag? = a3 = 1/3) is
A100 and A11; in the [100] and [111] directions respectively. The strain in a
direction perpendicular thereto is then —4A100 and —%A11 respectively.
In an arbitrary direction we then have parallel to the magnetization

Aa1,a2,03) = A100 + 3(A111 — A100) (@12a2? 4 as2a3? + a3z2a12). (13.2)
For a polycrystalline substance the average A will be:
As = %[5 Moo + 3/5A111. (13.3)

For hexagonal crystals the A values of the deformation components
€z and ez,y. Will be different from those of €zz,yy and ezy respectively. For
the ferromagnetic metals the values of A at room temperature (for Co
parallel and perpendicular to the ¢ axis) are found to be:

Fe Ni Co
Argo = +25%x10-6 A100 = —46x 106 Al =—60x10-% (13.4)
A111 = —19% 10-5 A11; = —25x%x10-6 A, = +16%x10-¢ )

The origin of linear magnetostriction is closely related to that of crystal
anisotropy. If a cubic crystal is deformed it is no longer cubic, so that there
may also be present a uniaxial crystal anisotropy as in (11.6), which is pro-
portional to the deformation. The total energy caused by the deformation
consists, then, of this crystal energy and the elastic energy.

For a cubic crystal the deformation energy may, in first approximation,
be written as:

F = Bijezs(a? — §) + eyylaz® — }) + exlas® — §)f +
+ Bz(ezyalaz + €yz0203 -+ Ezzasal) —+ ‘}_‘Cll(fxxz -+ nyz + €zz2) —+-
+cr2(exeyy + eyyerr + €zzeza) + Acaa(ery® + €y + €222, (13.5)
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from which it follows by minimizing with respect to e; and using (13.1):

2 B; 2 B
AMpg=— —————— Al11 = — ——. (13.6)
3 c11 — C12 3 caa

The linear magnetostriction stands in the same relation to the crystal
anisotropy as the volume magnetostriction (or rather the expansion anomaly)
to the exchange energy. The same mechanisms that give rise to crystal energy
will also be able to produce magnetostriction. The temperature dependence
of ) or of B; and Bz in (13.5) will thus be as of K; of uniaxial crystals, i.e.
as M3, according to Zener, provided the elastic constants do not change
appreciably with temperature. Experimentally, A oc M,? is found for nickel.
Since the B’s are of the order of magnitude of K1(107 erg/cm?), A should
be about 10-5, as is found experimentally.

Substituting the values of the €’s found by minimizing (13.5), the equation
(13.5) gives an expression in terms of the o’s which has cubic symmetry,
and thus is to be regarded as a cubic crystal anisotropy like the first term
in (11.1). This represents the difference in anisotropy energy between the
states of constant stress and constant strain of the crystal. The order of
magnitude of this contribution to Ki is ¢A?; for ¢ = 102 dyne/cm? and
X = 10-5, this is equal to 102 erg/cm?, which is usually much smaller than
Ka. For cobalt ferrite, however, A1oo is 540 X 10-6, so that this contribution
to K1 is of the order of 3x 105 erg/cm3, which is no longer negligible as
against the observed K; of 4 108 erg/cm3.

An extra deformation can be brought about by means of an external
stress o. This can be brought formally into the calculation by adding to (13.5)
— analogous to the +pV term in thermodynamics — a potential energy
due to the stresses:

Egtress = —0€ = —0gpegq — Oyy€yy — Ozz€zz +

—Ogy€zy — Oyzfyz — zafzz. (13.7)

By minimizing the total energy we find the deformations, which now con-
sist of the magnetostrictive deformation plus that due to the stress. This
deformation substituted in the energy gives, in addition to the cubic term
in ¢, a non-cubic term resulting from the deformation due to stresses:

Estress = — 3[3 A100 § 022012 — Y/g) + oyy(az? — 1/p) + 02z (as? — 1/5) t+
— 3/, \i11 ) egym102 + €ypazag + pag01 f. (13.8)

We can interpret (13.8) by saying that the magnetostrictive deformations
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must perform extra work against the applied stress. For a tensile stress
o2z = o in the z axis, we may write (13.8), apart from a constant, as:

Eytress = 3/, Aosin? 6, (13.9)

which is of the same form as the K term in (11.6). One can think of a rod
loaded in the (vertical) z direction by a weight. If we change from transversal
to longitudinal magnetization, the length of the rod changes by 3/2A, so
that an extra energy of 3/2Ac must be supplied, in accordance with (13.9).

If we insert Young’s modulus E for ¢ in (13.9), corresponding to a doubling
of the length of the rod, we have made the material essentially non-cubic.
The anisotropy energy (13.9) must then be of the same order of magnitude
as the quadratic term in (11.6), i.e. AE = Kj, which comes down to the
qualitative relation between A and K; given above. The order of magnitude of
(13.9) for ¢ = 1000 kg/cm? (10° dyne/cm?) is approximately 10* to 105
erg/cm3, which is in the region of the energy of cubic crystalline anisotropy.



CHAPTER YV

MAGNETIZATION PROCESSES

§ 14. Weiss Domain Structure

In consequence of the demagnetizing energy it is usually more advantage-
ous for a ferromagnetic body, rather than to be uniformly magnetized, to
divide itself into a number of Weiss domains, in which the magnetization
vectors are parallel to a preferred direction such that the demagnetizing
fields, and hence the energy (2.8), are as small as possible. These uniformly
magnetized domains are separated by a thin layer in which the direction
of the magnetization gradually changes from one orientation to another.
This transition boundary, known as a “Bloch

wall”, will be discussed in § 15. For the division Mt __M
into Weiss domains to be effective, no magnetic
poles must form on the wall, that is to say the
component of the magnetization perpendicular
to the plane of the wall must, according to (1.8),
be equal at both sides, i.e. My1 = Mas in Fig.
14.1. The requirement is that the wall should be  Ej; 14.1. Orientation of the
parallel to the difference vector (M1 — M3). With  magnetization vectors M
two directions of magnetization, then, there are and Mz at each side of a
associated an infinite number of wall orientations, ~ Bloch wall.

If the above requirement is not satisfied, demag-

netizing fields will still appear and the Weiss domains will have lost, in part,
their reason for existence. Fig. 14.2 gives some examples of Weiss domain
structure with so-called 90° and 180° walls in which there is flux closure,
that is to say no magnetic flux leaves the structure and hence there is no
demagnetization. Weiss domains also occur in order to eliminate internal
A TA demagnetizing forces. This was pre-
dicted by Néel [Ne 3]andlater found
I l T l T 1 by experiment. In Fig 14. 3a the Weiss

domain structure is given around
a hole or non-magnetic inclusion in
EAVL AVE D a cubic material. Demagnetization
is not entirely absent since there is
always some charge present on the

Fig. 14.2. Examples of Weiss domain con- walls that are not perfectly parallel.
figurations in which flux closure occurs. This need not be the case if there is

a b



§ 14] WEISS DOMAIN STRUCTURE 61

a 180° wall near by (Fig. 14.3b). As was first remarked by Landau and
Lifshitz [La 1], the geometry of the Weiss domain structure is deter-
mined by the requirement that the total energy must be minimum. In
addition to magnetostatic energy and crystal energy or other anisotropy
energy, this also includes the wall energy. Inside the wall the spins
are not parallel, and, because they are not aligned in the most favour-

Fig. 14.3a) Formation of extra Weiss domains around an inclu-
sion to avoid demagnetization energy. In b) there is a Bloch
wall near the inclusion.

able direction, this costs exchange energy and crystal anisotropy energy.
The result is that the wall has a finite energy per unit area, which we
shall designate oy. This will be dealt with more in detail in § 15. Owing
to the occurrence of these two kinds of energy, the width of the
domains, e.g. in Fig. 14.2b, will have a specific value, corresponding to a
minimum of the total energy, and also the configuration in Fig. 14.3b
will change to that of Fig. 14.3a if the 180° wall is too far away. The wall
area is reduced at the expense of some demagnetization energy. Furthermore,
if the magnetostriction is finite, strain energy has to be taken into account,
for, except in the case of a 180° wall, the magnetostriction differs at each
side of the wall, giving rise to strains.

|l
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Fig. 14.4. Weiss domain formation in a thin plate.
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We shall determine, by approximation, the thickness d of the Weiss do-
mains for the configuration of Fig. 14.4a, i.e. the same as Fig. 14.15, but
without closure domains. The demagnetizing energy is proportional to
the ratio d/D of the Weiss domains, where the values are not too large,
D being the thickness of the specimen plate. Calculations show [Ki 2]
that the demagnetization energy per unit volume of the plate of ferromag-
netic material is 1.7 M;2d/D. The wall energy per cm3 is oy/d, and hence
the total energy is

d ow
E=1TM#— 4 —. 14.1
£+ (14.1)
Putting the differential of E with respect to d equal to zero gives:
d owD % (14.2)
B (1.7 MSZ) '
LTM20,)\ %
E=2 (%) 2 (14.3)

We have here assumed a uniaxial crystal anisotropy. Where K = K1 + Kz
is not too large, the configuration from Fig. 14.2b will also be possible;
there will then be some competition between the crystal energy and the wall
energy. The crystal energy is Kd /2D per cm3, while for d < D the wall
energy is practically unchanged; in (14.1), then, the first term on the right
hand side is replaced by Kd/2D. If the latter is smaller, the configuration
from Fig. 14.2b will appear, that is if K<< 3.4M,%. For cobalt at room tem-
perature, K= 5x10¢ erg/cm3, and M, = 1430 gauss; hence 3.4 M;® =
7% 108 erg/cm?. The above calculation holds good for the case where the
magnetization outside the walls cannot deviate from the preferred direction.
In reality this will not be the position of equilibrium, owing to the demagne-
tizing fields arising. Consequently, the spins will no longer be mutually
parallel and will fan out slightly near the surface (Fig. 14.45). If the variation
in direction is slow compared with that in a domain boundary, which is
the case when the Weiss domains are thicker than the walls, the change in
exchange energy is negligible. If the permeability due to rotations is prot,
the demagnetization energy is reduced by a factor (urot -+ 1)/2. It will be
seen in § 17 that uret is equal to 1 4- 2w M,2/K, so that the demagnetization
energy for cobalt is reduced to about 3.1 X 106 erg/cm3; for cobalt, therefore,
the configuration in Fig. 14.4 should appear. This is in agreement with
experiments by Germer [Ge 1], who, with the aid of electron bombard-
ment (cathode rays), demonstrated fields of the order of 104 oersteds on a
surface perpendicular to the ¢ axis.

From (14.2) it follows that d/D oc D%, so that the Weiss domains become
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less slender as the thickness D diminishes. The derivation is then no longer
valid. If K < 2wM,?, the magnetization will rotate in the plane of the
plate at a thickness
Dyt < S8 Milow (14.4
rot << X2 ’ . )
as follows by putting the energy (14.3) equal to K.

For every finite body there is a critical dimension below which no
Weiss domains can exist. If the dimensions of a given configuration be re-
duced uniformly by a factor f, the demagnetizing energy will change by
a factor f3, but the wall energy by f2. As regards a sphere one has to compare
the configurations in Fig. 14.5a and b, in order to calculate the critical dia-
meter in a material with uniaxial anisotropy. The demagnetizing energies
differ by about a factor 2. The gain, then, is about (#%/18) M,2D3. The loss
in wall energy is wDZ20,/4, so that for the sphere

Der = 1.4 00/ M2, (14.5)

In the next section we shall see that in most materials oy, is of the
order of magnitude of 1 erg/cm?; for Ms = 1000 gauss, then, the critical
dimension is Der = 10-6 cm. This is very small, being in most cases of the
same order of magnitude as the wall thickness, and the calculation is no
longer valid. Where D is smaller than the wall thickness, single domain be-

) U]

Fig. 14.5. Magnetization in a small sphere without
and with Bloch wall.

haviour is the result. In some permanent magnetic oxides in which oy, is
fairly large and M, small, Dcr may be of the order of 104 cm.

With the same assumptions for oy, and M;, we can estimate the thickness
of the Weiss domains. According to (14.2) where D = 0.1 cm, it follows
that d = 3x 104 cm. If the size of the non-magnetic inclusion or hole in
Fig. 14.3 is several times smaller than that given by (14.5), no extra Weiss
domains will appear here either.

The Weiss domain structure can be made visible on a surface under the
microscope with the aid of a FesO4 powder colloidally suspended in a soap
solution. This powder coagulates at the position where the strongest field
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prevails. Even though the magnetizations in the Weiss domains are parallel
to the surface, so that no stray fields can be expected, these nevertheless
appear at the position of the wall, thereby making the walls visible. An
example of a powder pattern on a crystal oriented sample of BaFe;201g
is given in Fig. 14.6. In the case of metals the surface must be thoroughly
destressed, for example by electrolytic polishing and annealing, otherwise
the Weiss domain structure appearing on the surface will not be representative
of that inside the material. Owing to the occurrence of closure domains this
pattern can differ from the simpler domain structure below the surface.

Another way of making ferromagnetic domains visible is to analyse the
light that has passed through a ferromagnetic body. As a result of the optical
Faraday effect the plane of polarization of plane-polarized light will be ro-
tated differently when the light passes a thin sample parallel to the mag-
netization of oppositely oriented Weiss domains. Fig. 14.7a¢ and b gives
pictures obtained by Kooy. [Ko 1] with the help of a polarizing microscope
with not completely perpendicularly oriented nicols. The sample is a single
crystal disc of BaFe;12019 with a thickness of about 1 micron. The magneti-
zation of the domains is perpendicular to the surface of the disc. The light
and dark regions are domains with oppositely oriented magnetizations. Fig.
14.7a applies to the demagnetized state, Fig. 14.7b to a state after complete
magnetization perpendicular to the plane and allowing the field to return
to zero.

A third method is that which makes use of the magneto-optical Kerr
effect. The reflection of light on the surface of a magnetic material
depends on the permeability. Results for the compound MnBi have been
obtained by Roberts [Ro 1].

§ 15. The Domain Boundary (Bloch wall)

The transition of the spin direction from one Weiss domain to another does
not take place abruptly, since that would cost too much exchange energy.
Instead, there is a gradual rotation of the spin vectors, as shown schemati-
cally in Fig. 15.1. To prevent demagnetization the normal component of
the magnetization 1emains continuous inside the wall also. An exact cal-
culation of a 180° wall has been given by Landau and Lifshitz [La 1].
To estimate roughly the wall energy 0w and the effective wall thickness
8w, we shall approximate the spin configuration inside the wall by assuming
the (small) angle 44 between the spins in successive atomic layers parallel
to the wall to be constant. According to (5.1) (with cos 4¢ =~ 1 — 1(44)?)
and (6.14), the exchange energy per cm? of the wall will be of the order of

Oex — kTC/asw,
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N

Fig. 14.6. Powder pattern of polycrystalline BaFei12014.
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where q is the lattice constant. The exchange interaction will thus tend
to make the wall as thick as possible. This is opposed by the crystal energy,
which will be of the order of magnitude of

Hence a stable equilibrium will appear where

sw;]/?kTC (15.1)

and therefore the total wall energy per cm? is

ow V KoK ~ ks, (15.2)
=) —

This wall energy, then, consists for one half of crystal energy and for the
other half of exchange energy. For T¢ = 1000 °K, K = 105 erg/cm?® and
a = 2x10-8 cm, oy is of the order of 1 erg/cm? and 8, = 10-5 cm, corres-
ponding to several hundreds of inter-atomic spacings. We see immediately
* that the assumed configuration cannot be the correct one if we consider the
equilibrium of one individual spin. If the angles made by this spin with

— X
Q \—
Fig. 15.1. a) Spin configuration inside a Bloch wall. =S

b) Angle of deviation ¢ as a function of position. The broken line indicates the configu-
ration on which the calculation was based.
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the preceding and the succeeding spin are equal and opposite, the same will
hold for the torques acting on the central spin, so that owing to the exchange
interaction the total torque acting on the spin is zero. This is not the case
with the crystal energy, since the spin is not in the easy direction. This crystal
anisotropy couple must be cancelled by a difference in exchange couples
caused by the inequality of successive angles. The difference should be
smaller the nearer the spin approaches the preferred position (the crystal-
anisotropy couple is then proportional to the angle of deviation from the
preferred direction) from which it follows that ¢ oc —8,04/0z, so that for
z > 8y, ¢ o exp. —z/8yp. Actually it is found that

sin ¢ = 1/cosh (z/8y). (15.3)

The energy is not much affected by this erroneous assumption of the con-
figuration, owing to the fact that we have minimized it. The term wall
thickness, then, has a meaning similar to that of the skin depth of electro-
magnetic waves in conductors.

From (15.2) we see that the wall energy is proportional to yK. For two
materials with approximately the same Curie temperature and lattice con-
stant the wall energy will thus be greater for the material having the larger
crystal anisotropy, whereas the thickness of the wall will be smaller. In
general, a variation in K is also caused by a variation in temperature. How-
ever, it must be borne in mind in that case that the expression for the energy
of exchange interaction, which we have put equal to kT¢, is no longer valid
at high temperatures, where the exchange energy is smaller. According to
(5.1) it seems reasonable to put the exchange interaction energy as propor-
tional to M2, so that kT¢ in (15.1) and (15.2) must be multiplied by Ms2/Mo?,
where Mg is the saturation magnetization at the absolute zero of temperature.
As a function of temperature, then, we find according to (15.2) that oy o
M;y K, and according to (14.5)

Der oc K/ M. (15.4)

In many cases K decreases faster with increasing temperature than M2
(see § 11.1) and hence the critical diameter for wall formation, owing to
the relative cheapening of the walls, will become smaller with higher tem-
peratures. From (14.2) it follows that also the dimensions of the Weiss
domains — and this will apply to most other configurations too — will
change in proportion to }JK/Ms;, exactly like the critical diameter. Thus,
in most substances the subdivision into Weiss domains will become increas-
ingly finer with higher temperature.
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§ 16. Magnetization due to Domain Boundary Movement
16.1. PERMEABILITY

An externally applied magnetic field will try to alter the Weiss domain struc-
ture and, if it is strong enough, will cause the Weiss domains to vanish.
A magnetic field exerts pressure on a Bloch wall. Consider, for example,
a 180° wall and a field parallel to the magnetization. If the 180° wall has
moved by a slight amount 4x, then the total magnetic moment has increased
by 2 M,dx per cm? wall area. As a result, the potential energy has decreased
by —2 HM,4x. The same change of energy would occur 1f the wall were
subjected to a pressure equal to

p =2 HM, (16.1)

This pressure pushes the wall in such a direction that the domain with the
magnetization in the same sense as H becomes larger. Here 2M; is under-
stood as the difference between the tangential components of the magneti-
zation at either side of the wall. For other types of walls (e.g. 90° walls)
the pressure changes accordingly. The pressure thus originates solely from
the field H = Hy + Hp (see 1.7)). The internal fields B — H or the Lorentz
fields 4w M,/3 are parallel to the local spin vectors and change with the move-
ment of the wall, so that there is no change of energy. These internal fields
therefore have no influence on the wall movement.

As a general rule the wall will not be entirely free to move. In the fore-
going sections we have seen that a particular configuration of the Weiss
domain structure will establish itself in a crystal. That configuration corres-
ponds to a minimum of free energy, consisting of demagnetizing energy,
crystal energy, wall energy and possibly magnetostrictive energy. This means
that the walls are bound with a certain stiffness to their positions of equili-
brium. For small amplitudes of the field this gives rise to a permeability .
which is inversely proportional to that stiffness. We shall demonstrate this
with a few examples. If the body is irregular in shape, for instance a grain with
a constriction, then owing to the surface stress the wall will prefer to extend
over the smallest cross-section, like a soap bubble, and will have a stiffness
for displacement of ¢,d%4 /dx2, where A is the area of the cross-section.
This tendency to reduce the wall area is also of importance when non-
magnetic inclusions or holes are present, as is frequently the case in tech-
nical ferromagnetic substances. Attention was first drawn to this by Kersten
[Ke 1], who assumed that the walls would stretch from hole to hole (Fig.
16.1a), resulting in the smallest possible wall area. However, it was shown
by Néel [Ne 4] that the reduction of the demagnetizing energy is much
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more important than that of the wall energy. This case is comparable with
that of Fig. 14.5, where the sphere is magnetized but not its environment;
although the reverse is true here, there is no difference as regards energy.
The reduction of demagnetizing energy, then, will be more important
than the reduction of wall energy if the inclusion is larger than the critical
diameter (14.5). According to Néel it is then possible to reduce the demag-
netizing energy still further, or to eliminate it, by the formation of extra
domains (Fig. 16.15). If the wall moves, the situation arises as shown in
Fig. 14.3, in which the wall area is larger, so that the wall is held firm by
the inclusion.

Where the dimensions of the inclusion or the hole are smaller than the
critical diameter (14.5) or the wall thickness, no extra wall formation will
take place, but the wall will nevertheless prefer to contain the inclusion.
The reason is that the exchange energy and the crystal energy are greater
in the wall than outside it, and therefore if the inclusion is inside the wall
this extra energy will not be called for. The demagnetizing fields will try
to turn the magnetization, causing the pole strength to decrease. For in-
clusions smaller then the wall thickness this will not occur to any appreciable
extent since it would cost too much exchange energy. In effect, the dimen-
sions may be compared with a wall thickness formula in which X is sub-
stituted by a demagnetizing energy, i.e. with approximately (}K/Ms)Sw.
For a change of direction on this
scale the exchange energy is com-
parable with the demagnetizing + I + !
energy. Dijkstra and Wert [Di 1] | n [ +
have shown that the wall-immobili-
zing effect is greatest for inclusions
of FesC in iron with dimensions
equal to the wall thickness.

The wall movement is also hinder- —_—
ed by physical imperfections in the
crystal, such as dislocations. Where
the atomic ordering is imperfect the ¢ ?
exchange and crystal energy will also
be smaller. Inhomogeneities on an
atomic scale, such as vacancies, and ‘T
deviations from periodicity as in dis- - .
ordered alloys, are of less impo rtance Flg.. 16.1. a) Wall formation between in-

R R X clusions, whereby free poles can appear.
since the concentration fluctuations

- b) Extra Weiss domains are formed, so
over the distance of a wall thickness  that no or only very few poles appear.
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are small. The deviations from the periodic structure in a dislocation
are important up to about ten lattice spacings from the centre. However,
a line dislocation extends in one direction over a considerable distance, so
that if a wall contains the whole line it will, according to Kersten [Ke 2],
be strongly bound to that line.

Finally, the wall can also be bound by irregular internal mechanical stresses,
for if the magnetostriction A 7= 0, according to (13.8) there will be an extra
uniaxial magnetic anisotropy present, which is equivalent to the crystal
energy. According to Becker and Kersten the wall energy changes because
K in (15.2) must be augmented by a term of the order of K8 = 3/2)0, which
can thus be either positive or negative, irrespective of the sign of the stress
(compressive or tensile stress). The wall will prefer to be at a position where
the wall energy is lowest. Néel [Ne 4] has pointed out that these stresses
cause the preferred direction of magnetization to vary from place to place.
Consequently, the magnetization will not be uniform and poles and stray
fields will appear. In the state so produced the total energy, consisting of
crystal energy, stress energy and demagnetizing energy, will be at mini-
mum. Due to stresses the preferred direction will make an angle of the order
of K /K = 0 with the original preferred direction for K, <. K. The angle
of deviation of the magnetization will be of the order of (K/NM;?) 6 =

K, /NM2, where N is a demagneti-

zing factor of the order 4x/3. This

applies to the case where 1NM;2

< K. The demagnetizing energy will

then be of the order of K2/NM? per

a cm3. This energy can now be reduced

by a wall since a 180° wall reverses

Fig. 16.2. Owing to inclusions or internal

stresses, the material contains free poles (a).
If a domain having a uniform polarity is
intersected by a wall, the sign of the poles
will reverse in the domain in which the
magnetization has reversed, resulting in a

the polarity of the charge (see Fig.
16.2). In a domain having a dimen-
sion perpendicular to the wall of J,
being the correlation distance or

period of the internal stresses, the
energy is then changed by an amount
of K 2I/NM,? per cm? of the wall. This change in energy density (K2/NM,?)
is thus much smaller than K_ itself, but since the former change of energy
takes place over a much larger volume than the latter, which occurs only
inside the wall, the effect of the magnetic poles, as suggested by Néel, can
be more important than the direct change of the wall energy if

NMg2

reductjon in magnetostatic energy (b).

1> S (16.2)

4
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For example, where NM;2 = 3x 105 erg/cm3, K, = 2Xx 104, §,, = 5x 106,
then / > 10—4 cm, as is usually the case, although this distance must be smal-
ler than the linear dimension of a Weiss domain.

In the foregoing case, the exchange energy was disregarded even though
the magnetization was not uniform. This is permissible if /> 8, which was
the condition for the derivations given.

So far we have discussed the factors that determine the position of a single
plane wall. A Weiss domain structure, however, is stable only as a whole,
that is to say the walls are strongly coupled to each other, and in general a
particular wall will only be able to move provided that all the others — or at
least a number of them — move too. If that were not the case, poles would
appear which would give rise to large opposing fields. The magnetization
process caused by wall movement should accordingly be regarded as being
a cooperative phenomenon. This is of particular importance for explain-
ing the coercive force.

If the walls are strongly coupled to each other or to imperfections in the
crystal, individual wall movement is nevertheless possible though the bul-
ging of a wall held at the edges. Kersten regards this as the most important
magnetization process in small fields in many alloys. If in the bulging process
the difference vector of the magnetizations at each side of the wall does not
remain tangential to the surface of the wall, poles will appear on the wall
which will hinder the bulging. Where the walls are held by straight lines
parallel to the difference vector of the magnetizations this will not be the
case, and the opposing force will then be exerted only by the surface stress
of the wall, as in the example of a soap bubble. In this case it is easy to
calculate the permeability resulting from a number of these walls at a dis-
tance d apart, and we find

M,2D?
p=4

=S s
O‘wd

(16.3)

in which D is the span of the wall. For example, where M,2 == 105 gauss?,
D = d =103 cm and oy = 1 erg/cm?, we find u = 400. The temperature
dependence for constant d is as M/} K, hence in most cases it rises sharply
with temperature. If d changes as Der in (14.5), ¢ would change as M,2/K.

Where the wall is held on all sides, pole formation is unavoidable
during the bulging process. Consider a ring of diameter D, in which the wall
is spanned. If we approximate to the volume ¥ through which the wall
moves by an ellipsoid of revolution having major axes D and a minor axis p,
the . demagnetizing energy can be simply calculated (see Fig. 16.3);
it is found to be about (20 p/D) M2V, where V = (=/6) pD2. Here again,
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the demagnetizing fields will slightly rotate the
magnetization vectors, so that fewer poles will
appear. It can be estimated that the pole strength

will change by a factor K/2#M;2 (< 1) and
therefore the demagnetizing energy (including
crystal energy, which will be of the same order I
of magnitude) will now be

AE; = K%pV/M?2D.

] . . Fig. 16.3. Bulging of a wall
This energy is still greater than that due to held in position at the edges,

the increase of the wall area under the influence of an
6 5 external field H. The magne-
- p.6vV P Ow tic poles appearing are indi-
2y, ~ L0 ~ £ %
AEy = nploy = D ow:6K.D.D .V, cated.

since 8, << D. We need therefore only take into account the demagneti-
zing energy. The magnetostatic energy is —2HM,.V, so that by mini-
mizing we find for the permeability, at a wall spacing d,

= 20 M*D/K2d. (16.4)

Where M;? = 105 gauss?, D = d = 10-3 and K = 105 erg/cm?, it follows
that 1 = 10. In this case the temperature dependence is thus as M¢/K2
if d remains constant, or as M,®/K5/2 if d also varies.

16.2. COERCIVE FORCE

If we plot the energy of a wall, no matter how it may be caused, as a
function of its coordinate of position, the result will be a fluctuating curve
as shown in Fig. 16.4a. In the absence of an external field the wall will be
in a minimum (4) and the susceptibility is then proportional to d2E,/dx?
in that minimum. Upon a field being applied the wall will move until the
pressure balances the opposing force:

2 MH = dE,/dx. (16.5)

With increasing H the wall goes on moving until the maximum value of
dEy/dx is reached (tangent point B of the curve in Fig. 16.4a). If H increases
still further, a stable equilibrium is no longer possible and the wall moves
irreversibly to a position where dE,,/dx does have a large enough value (C).
It may also happen that a wall has already come from the other side, so
that the two walls eliminate each other, i.e. the Weiss domain disappears.
If, the wall having arrived at C, the field is now allowed to decrease, the
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wall then returns reversibly to the minimum D for H = 0, after which,
upon the application of an opposing field, the wall goes to the tangent
point E and then moves irreversibly to point F. If we now let H approach
zero again, the wall returns reversibly to 4. In this way a hysteresis loop is
obtained as shown in Fig. 16.4b, in which the magnetization M of the
sample is put proportional to the change of x. (The loop in this case is
turned 90° with respect to the normal representation.) The area of the loop
[HdM is the energy dissipated during the irreversible movements; this is
absorbed as heat, caused by for example eddy currents produced by the
rapidly changing magnetization. In a non-conductive medium the retarding
of the wall by direct coupling of the spins with the lattice (spin-orbit inter-
action) is the most important mechanism.

The critical field-strength, then, is determined by the maximum value
of dEy/dx:

H, = iM;s (dEw/dx)max. (16.6)

It can be calculated for the various mechanisms which hold the Bloch wall
in position and which have been discussed in § 16.1. Statistical treatment is
then necessary in order to obtain a representative maximum value from this
fluctuating quantity.

In most cases the process described reverses the resultant magnetization,

H Fig. 16.4. a) Schematic represen-
[ A 0 tation of the wall energy as a func-
tion of the position x of the wall.
—M For H = 0, the wall is either in

A or in D.
b) The change of magnetization

caused by the wall movement as a
function of the field H.

o~
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and accordingly H. is to be identified with the so-called coercive force, i.e.
the field strength for which M = 0. Néel has computed the coercive force
on the basis of minimum demagnetizing energy for the case where an inter-
nal stress o prevails in a volume fraction v of the material.

H.~ (1.05 vda/M;) [2.23 + In(M,/}FA0] for § do> K

He == (0.191 v2%2/KMy) [1.79 + In(M,/}K)] for § Ao < K. (16.7)

For the case of a volume fraction » consisting of non-magnetic material
in cubic crystals with K1 > 0, Néel finds:

= 0.39 In——
e = +3 K]

~ Skl [ Z"M"z] . (16.8)

TiVLg

For K3 < 0, K1 has to be replaced by 2/3 Ki in (16.8).

§ 17. Magnetization due to Rotation of the Magnetization Vector

If there are no Bloch walls present (almost complete saturation, or small
grains) or if the walls, under the influence of the fields discussed, are unable
to move, magnetizing will take place as a result of the uniform rotation
of all spins in the domain in question. We may represent the magneti-
zation of this domain as a rigid vector M. The torque T exerted thereon
by a magnetic field H is given by

T = MxH, (17.1)

K where the vector product must be taken, i.e.
M T is at right-angles to both M and H (this means
the moment is in the plane of M and H) and has
the magnitude HM sin 6, where 8 is the angle
between M and H. The equilibrium orientation
Q is reached when this torque is equal and opposite

to that exerted by the crystal anisotropy, etc. We

see from (17.1) that the effective field is again H,
Fig. 17.1. Mutual orienta-  pecayse the internal fields B— H or 4=M,/3
?Ig;l : :;fe tlfp;;:g ;’I;;m; exert no torque on the magnetization vector.
and the magnetization vec- 1his may well be the case with an anisotropic
tor M. Lorentz field, but this we include in the crystal
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anisotropy. In general, then, it may be said that in ferromagnetic substan-
ces the effective field for magnetization processes is equal to H.

The position of equilibrium of the magnetization vector is found by
minimizing the total energy. For the case of uniaxial crystalline anisotropy
and a magnetic field H that makes an angle « with the easy direction, this
energy per cm3 (see Fig. 17.1) is:

F = Ksin2 6 — HM cos (a — 0). (17.2)

For the position of equilibrium the condition is that dF/d8 = 0, that is
the resultant couple must be zero. With this relation we can calculate 6,
which we shall do for two simple cases.
o =90°. The position of equilibrium is then given by:

sin 6o = HM/2K = H/HA, (17.3)

where H4 is the anisotropy field defined
in (11.5). Equation (17.2) holds for (6) T""M
H < HA4; for higher fields, M remains <

directed along H. The resultant suscep-

tibility is

fa)

x = M/HA, (174
which is constant for H < H4 (Fig. H
17.2a curve). The value (17.4) holds
for all H4 fields from (11.7). >
a = 180°, In this case, a stable position
can appear only when sinflp = 0 (6 =0
or 180°); the position withcos § — H/H4  Fis. 17.2. Magnetization curves for a
is always labile. In order t.o see readily f;z s;fl;i)‘::’:ezg;::;:: ?:;S:;fioz Zr‘:ﬁt:;
for what field the magnetization vector () (o the preferred direction of mag-
will turn over, we may write in this netization.
case for (17.2):

] 0
F = HM -+ 2 sin2 E(ZKCOSZ 5 HM).

The position 6 = 0 will no longer be stable if, where 0 is small, the factor
between brackets becomes negative. This is the case if the field exceeds a
critical field strength

H, = HA, (17.5)

With this field, then, there also occurs an irreversible magnetization pro-
cess and a hysteresis loop is obtained which is perfectly rectangular (Fig.
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17.2, curve b). This is contrary to the case for « = 90°, where there is always
equilibrium for every field strength and no hysteresis loop appears.

Where 90° << a < 180°, the magnetization vector turns over for 1 HA <
H, < HA. The value H, = 4$H4 appears for a = 135°. After turning over,
and in the case of a < 90°, the magnetization vector rotates gradually in
the direction of the field; this direction can only be reached, however, in
an infinitely strong field. This approach to saturation has been calculated
for an isotropic distribution of the preferred directions over a sphere, and
one finds for the series expansion in 1/H:

8 K2 192 K3

AM[M, = 17.6
M= o5 H2M? + 5005 mome T (17.6)

The fact that the term with 1/H does not occur is evident, since the total
energy difference, consisting of HAM and the difference in crystal energy,
must vanish with respect to the total saturated state for a very large field.
Néel [Ne 5] has shown that for a polycrystalline specimen, for which
(17.6) was derived, H must be substituted by

47 M,

H; = H 3 7.7

This is, as it were, a macroscopic Lorentz field. The grain concerned is
assumed to be spherical, with a preferred direction not parallel to H. The
surrounding material then induces in the direction of H a field 4=M/3,
in which M is practically equal to the saturation magnetization. This field -
can, therefore, exert a torque on the magnetization in the sphere, whereas
its own demagnetizing field, which commonly compensates the induced
field, can not.



CHAPTER V1

DYNAMICS OF MAGNETIZATION
PROCESSES

§ 18. Ferromagnetic Resonance Conditions

18.1. RESONANCE IN UNIFORMLY MAGNETIZED FERROMAGNETICS

In the last chapter we dealt with the statics of magnetization processes and
calculated the energetically most favourable configuration after the appli-
cation of the field. We shall now consider how the transition takes place
from the one state to the other. First of all we shall deal with the rotation
processes and inquire into the resonance phenomena that can occur during
these processes. ‘

Consider a static field H in the z direction and a magnetic moment M
making an angle 6 with it (Fig. 18.1). Owing to the field a torque (17.1)
is exerted on M, which does not, however, rotate M towards H. This is
because of the gyroscopic properties of the magnetic moment. In § 3.1
it was shown that the magnetic moment is associated with an angular mo-

mentum J according to M — gle/2me)] = 47, (18.1)

The equation of motion is
J=T=MXxH. (18.2)

In very good approximation we can take for the J in (18.2) only the spin

4 angular momentum in (18.1), so that
‘l L]

M = yMxH. (18.3)

from which it follows that the change of the

M magnetization vector is always at right-angles to

both M itself and to H. The M vector precesses

over the surface of a circular cone with an
angular frequency

w = vH, (18.4)

irrespective of the magnitude of the precession
angle 6. For the spin of a free electron the

Fig. 18.1. Schematic repre-  resonance frequency f in Mc/s is according to
sentation of the precession this equation

of a magnetization vector M

in a magnetic field H. f=280H Mc/s (18.5)
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if the applied field H is expressed in oersteds. As a rough estimate, HA =~ 104
oersteds cm, where A is the wavelength in free space.

By substituting (18.1) into (18.2) we neglect the change with time of
the angular momentum of the electron in the directions at right-angles
to the spin axis. The contribution of this change of angular momentum
during the precession, which classically should give rise to nutation,
is a fraction which at the most is of the order of the precession frequency
divided by the spin frequency of the angular momentum due to the preces-
sion. Now the frequency (18.5) is usually not greater than 10! c/s, while
the spin frequency according to (3.1) is of the order of 2:x 1020 ¢/s, and so
nutation can be neglected. If the angular momentum were due only to or-
bital motion, the associated frequency would be of the order of 1014 c/s.

So far we have been discussing the free vibration of the magnetization
vector. In reality the oscillation will be damped, so that the magnetization
vector will move in a spiral towards the equilibrium position in the z direc-
tion, in which process the magnetic energy (here only the potential energy
—HM) will be lost to the lattice.

For every free vibration there must be at least two degrees of freedom.
In the mechanical case these are the kinetic and the potential energy, des-
cribed respectively by a coordinate of momentum and a coordinate of
position which, during the vibration, alternately merge one into the other.
The natural frequency is then the geometric mean of the two stiffnesses

wr = ycim, (18.6)

where ¢ is the normal stiffness (d2E/dx%) and 1/m can be regarded as the
kinetic stiffness (02E/0p2?). For ferromagnetic resonance there is only one
form of energy (magnetostatic —HM) in the case discussed, but because the
movement is in more than one dimension there are nevertheless two degrees
of freedom: the deflection in the x direction, defined by the (small) angle
¢z, and that in the y direction, ¢y.

We shall show that an expression similar to (18.6) exists for ferromagnetic
resonance. To do so we shall start from the most general form of the equa-
tion of motion (18.2):

Ju = OE[ody , Jy = —OE[0¢s. (18.7)

The minus sign is important and is connected with the fact that the second
equation in (18.7) follows from the first owing to a rotation of the z axis
by 90°, hence x—> y but y—> —x. In the equilibrium position the energy is at
minimum and so the first derivatives are zero. Thus, according to Taylor,
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one finds for small angles:
E = Eo + $Ez2¢2® + Ezydady + 2Eyydy® + ..., (18.8)

where the second derivatives Ej; = 02E/0¢d¢; relate to the equilibrium
position. For a harmonic oscillation of the magnetization vector with angu-
lar frequency « one then finds for (18.8), using the complex notation and
omitting the factor el«t:

—i(wM/]y)py = Ezzdz + Ezydy
wM|y)ps = Ezydz + Eyydy.

These equations can be solved for finite ¢z,y if w is equal to the resonance
frequency

(18.9)

wr = (y/M) (EzzEyy — Efy)%' (18.10)

If the energy is on the principal axes (Ezy = 0) then (18.10) is analogous to
(18.6), where E;» and E,y are now the stiffnesses. The energy is found alter-
nately in the deflections in the x and y directions. This expression holds
even if the energy is formed by the crystal energy or the demagnetizing
energy. For the general case of the equilibrium position not coinciding with
the z axis, we may write (18.10) in spherical coordinates (6, ¢), hence

wr = (y/Msin 6) (E,, E,, —E32,)3, (18.11)

where the second derivatives again relate to the equilibrium position,
found by putting the first derivatives equal to zero (QE/d0 = dE/dd = 0).
The expression (18.11) is singular for sin 6 = 0, which points must therefore
be avoided as equilibrium positions in (18.11).

As an example we shall take an ellipsoid in a uniform magnetic field H,
which is strong enough to orient the magnetization in the field direction.
The coordinate system coincides with the axes of the ellipsoid, which has
demagnetizing factors Nz, Ny and N, so that Hy > (Nz — Ny,;) Ms.
The energy is then, according to (2.7):

E=—HMginfcos ¢ 1 M2 3Nxsin2 0 cos? ¢ + Nysin2 0 sin2 ¢+ N,cos? Gg
and the equilibrium position is given by 6§ = =/2, ¢ = 0. We then find for
the resonance frequency the formula first given by Kittel [Ki 3]

wr = yV$Hz + (Ny— No)My{ $Hy + (No— NoMst  (18.12)

which, for a sphere, reduces to (18.4). The first ferromagnetic resonance
experiments were carried out by Griffith [Gr 1] on a thin plate of nickel,
for which Ny = N, =0, Ny = 4, and hence for the flat plate

wr = yV/ BH. (18.13)
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In (18.12) N.M; represents the static demagnetizing field to be subtracted
from Hy, while the terms NyM; and N,M; are caused by the alternating
magnetization in the y and z directions respectively, which raise the
resonance frequency.

‘Where only crystal anisotropy is present, with a preferred direction along
the x axis such that Fy = K62 holds for small a deflection angle 6, it fol-
lows that

w, = yH4%, (18.14)

where the anisotropy field H4 is given by (11.5). For cubic crystal aniso-
tropy (18.14) again holds with the relevant anisotropy fields from Table
11.1. In some cases the application of a magnetic field can give rise to a
lowering of the resonance frequency, as in the case where the field coincides
with the difficult direction for the crystal energy. For uniaxial crystal ani-
sotropy, with the preferred direction along the z axis and the field in the x
direction, the energy is

E = Ksin2 6 — HM sin 0 cos ¢.

The field turns the magnetization vector out of the preferred direction,
and the equilibrium position is reached when
sin @ = H/HA, (H< HY),

as follows if the differential from E with respect to 8 (or to sin 6) is equated
to zero. When H > H, the magnetization vector is parallel to H. For the
resonance frequency we find

(wr/y)? = (HA)? — H? (H< H4)

(wr/y)? = H(H— H4) (H > H4),
(see Fig. 18.2). When H = HA the resonance frequency is zero. This ob-
vious, because with the application of the field in the x direction the sym-
metry for the energy with respect to this axis remains unchanged. For small
fields it is a direction of maximum energy, for large fields one of minimum
energy. In between, and precisely when the magnetization arrives in the x
direction, the equilibrium position is neutral, so that one of the stiffnesses
is zero, and hence w, is also zero. This method can be used to generate
ferromagnetic resonance in strongly anisotropic crystals at relatively low
frequencies [Su 2, Sm 2]. Resonance can then be found at more than one
field strength.

In general, eq. (18.11) enables one to calculate the resonance conditions
for all cases in which combinations of field energy, crystal or stress aniso-
tropy and shape anisotropy occur. The equilibrium position is found first
by equating to zero the first derivatives of the energy with respect to the

(18.15)
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Fig. 18.2. Resonance frequency as a function of the applied
field H both parallel and perpendicular to the preferred axis
in a material having uniaxial anisotropy

angles, and the second derivatives are then calculated at that point. As a
general rule the stiffnesses in directions at right-angles to each oiher will
not in that case be equal, and as a result the precession will no longer be
over the surface of a circular cone but over that of an elliptical cone, having
an axial ratio } Eyy : } Ezz, as follows from the constancy of the energy
(18.8) during the precession (Ezy = 0).

18.2, INFLUENCE OF THE WEISS DOMAIN STRUCTURE ON THE
RESONANCE CONDITIONS

In § 18.1 we have seen that a free oscillation of the magnetization vector
(resonance) can also occur in the absence of an externally applied magnetic
field. The fictitious anisotropy field H4 then takes the place of the external
field. Resonance is therefore also possible in a non-saturated specimen, i.e.
in a specimen still divided into Weiss domains, as was first recognized by
Snoek [Sn 1]. We shall now show that the Weiss domain structure canvery
strongly influence the resonance conditions. Let us consider the simplest
case of an ellipsoid which is divided up into Weiss domains in the form
of thin slabs each oppositely magnetized to the next. The magnetization
vectors of the two kinds of domains can now be regarded as two systems
coupled to each other by demagnetizing fields. The two vectors will precess
in opposite sense, and consequently they cannot be in phase in two mutually
perpendicular directions. For the two modes of oscillation (natural reso-
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nance) of the system the alternating magnetization vectors are in phase
either in a direction at right-angles to the domain boundaries or parallel
thereto (cases (@) and (b) of Fig. 18.3 respectively). We shall now calculate
the associated (natural) resonant frequencies. In case (a) the alternating

oH

i
7

NN, NP=0 NEFoo NPTdm NPPen, NEFo
(a) (b)

Fig. 18.3. Resonance modes in unsaturated ellipsoids; (a) with the a.c.
field perpendicular to the walls; (b) with the a.c. field parallel to the walls.

magnetization in a direction at right-angles to the domain boundaries is
continuous (x direction), and so for this case the boundaries have no parti-
cular consequence: Nt = Ny, in which N, is the demagnetizing coef-
ficient of the ellipsoid along the x axis. In the y direction, however, the alter-
nating poles at the edge of the e'lipsoid are oppositely oriented in adjacent
domains. At spacings greater than the thickness of the domains they will
therefore cancel out each other’s effect. For thin Weiss domains we can
accordingly put N,°tf = 0. For the same reason, but then for static fields,
N2t = 0, so that, summarizing, for case (a)

Nt — N, N&tt=0, Ngett—0. (18.16)

These effective demagnetizing factors must be inserted in (18.12) in order
to find «,. However, x and z in that formula must be interchanged, and Hz
now becomes an anisotropy field H4,
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In case (b) the alternating magnetizations in the x direction are in anti-
phase. On the boundaries there are then alternating poles which, if the thick-
ness of the Weiss domains is small compared with the other dimensions,
will give rise to demagnetizing alternating fields at right-angles to the
boundaries of the order of 4nm, where m is the alternating component of
the magnetization. Hence N * = 4. In the y direction the alternating
magnetizations are in phase, so that the domain structure has no special
consequence and N,®tf = N,. Again, N = 0, so that for case (b)

Nt = 4m, N =N, N =0, (18.17)

Evidently, (1.12) no longer holds for the effective demagnetizing factors;
what now holds is the inequality

0 << N ot Nyeff 4+ NAIt < 8o,

The extreme limits are reached for an ellipsoid in the form of a flat plate
(Nz = Ny = 0, N, = 4m), and therefore in case (a), according to (18.16),
the sum is zero, and in case (b), according to (18.17), the sum is equal to
8x. The corresponding extreme resonance frequencies are, according to
(18.12),

(a@): wr= yHA4 b): wr= y(HA + 4nM;) (18.18)

18.3. MAGNETOSTATIC MODES

It has been shown theoretically by Walker [Wa 1] and experimentally
by Solt et al [Sol] that there also exist resonance modes of a
uniformly magnetized ellipsoid, whereby the alternating component of
the magnetization is not uniform. For example, it can happen that the
crystal is divided into parts in which the precession movements of the mag-
netization vectors are 180° out of phase. This gives rise to additional de-
magnetizing fields, while in other directions the dynamic demagnetizing
fields are reduced. As a result the resonance frequency will change and will
lie in general between y(H — 4= M) and y(H -+ 27M), as for the uniform
precession. The resultant alternating magnetization vector will, as a general
rule, be zero, and therefore these modes can only be excited with a non-
uniform alternating field.

§ 19. Ferrimagnetic Resonance

In ferrimagnetic substances the magnetization vector is the sum of the va-
rious magnetization vectors of the sublattices. Generally speaking, these
sublattices. differ crystallographically and are also occupied by different
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Fig. 19.1. Orientation of the sublattice magneti-
zation vectors M and M: at ferromagnetic reso-
nance, for the case where M1 > Mz and y1 < ya.
The torques caused by the Weiss fields WM; and
WM are then opposed to the torques exerted by
the field H on the magnetization vectors.

ions. The intrinsic properties of these ions, as manifested by the individual
g factor of the ions in the crystalline field, will therefore vary accordingly.
In the foregoing we have seen that the magnetic properties of ionic crystals
can be described in terms of the properties of individual ions. The latter
are only modified with respect to the properties of the free ion by the cry-
stalline fields. Each sublattice magnetization M; is given its own factor
yi. According to (18.4), then, the resonance frequency differs for each of
the subfattices. Owing to their strong mutual coupling, however, the sub-
lattices do not resonate individually but altogether at the same frequency
and in the same sense.

Let us confine ourselves, for the convenience of the argument, to two
sublattice magnetizations M; and Ma, which we assume to be opposite to
each other. The difference in resonance conditions is eliminated by the
fact that M; and M: do not remain strictly antiparallel during preces-
sion (Fig. 19.1) and that M, is subjected to the torque not only of the field
H but also of the Weiss field Hz) = WM». For example, if y1 << ys, the
torque on M; would have to be increased and on M; decreased. This
is, however, not possible. From Fig. 19.1 it can be seen that both
torques are increased or decreased simultaneously. However, since the
Weiss field torques are equal whereas the field torques differ (because
M F Mpy) the relative changes of the torques are unequal, and hence
the resonance conditions can still be equal. It follows from this that
40/ will be of the order of magnitude of (dy/y) (H/WM), where
Ay = y1— yq, 40 = 01— 0, and M = M1 — M. For a relatively small
resultant magnetization there can be relatively considerable differences
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between 6; and 8. In the situation as drawn, for M; > M; and
y1< vys, the torque acting on M; is reduced relatively less than that on
M. The effective y, then, will in this case be smaller than y; or ys. The
resonance conditions for each sublattice are (for small angles ) given by

wrM18) = y1[HM161 + WMiM»(68; — 65)]

19.1
wrM20s = y2[HM202 + WM1M3(6,— 62)] (19.h

The vector equation reduces in this case to a scalar, since all vectors are at
right-angles to the plane through M and H. These are homogeneous equa-
tions in 61 and 2, which have a solution only if

(ﬂ’ — H-— WMz) (“’—’ _H+ WMl) L WEAMIMe = 0. (19.2)
Y1 e

As we have assumed two sublattices we find here a quadratic equation with
two roots for w,, By approximation the lower one can easily be found
directly from (19.1). If we divide the first equation by y1 and the second
by y2, and then subtract one from the other, the Weiss field torques drop
out and we find

M 101 — M. 202

T (M1/y1) 01— (Ma/ys) 0 H.

Wy

(19.3)

Where H <€ W(M1— M3), as is normally the case (WM —Z 108 oersteds)
then 6 and 6, will be practically equal and cancel each other out in (19.3),
and we then find for the corresponding g value:

eft My — M _&1tg 818 (M1/g1) + (M2/g»)
& (M1/g1)— (M2/g2) 2 2 (Mafgr) — (Mz[go)

Since the absolute value of the factor after (g1 — go) is greater than unity
the value of getr never lies between g1 and g, as has already been argued in
the foregoing.

The other root for w, is very high, and in this case the Weiss field torques
predominate since the small angles 6; and 62 are quite different. In first
instance, then, we may neglect the torque due to the external field, i.e. we
may put H = 0 in (19.2). We then find

(19.9)

wr = W(y1Mz2— yaMy), (19.5)

which thus normally corresponds to a wavelength of about 0.1 mm,
in the infra-red region. Now the form between brackets in (19.5) is equal,
except for a factor y1ys, to the denominator of (19.4); the minus sign in-
dicates that the precession of (19.3) is in the opposite sense to that of (19.5).
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If this denominator becomes small, w; increases and ws decreases, so that
the resonance frequencies approach one another, as also appears from a
more exact analysis [Wa 2].

From (19.4) it follows that geff = 0 or o, according to whether the nu-
merator (M = 0) or the denominator (J = 0) is zero. These phenomena
occur at different temperatures in the Li-Cr ferrites, discussed in § 9.1,
resulting in hyperbolic g versus T curves (Fig. 19.2). A similar effect also
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Fig. 19.2. Change of the g factor as a function of temperature
for LiCr ferrite (after van Wieringen [Wi 1]).

occurs in Ni-Al ferrites as a function of the composition [Gu 1], while in
the vicinity of the compensation point even the second resonance (19.5)
has been observed.

The form of (19.5) might lead one to suppose that this second resonance
would also occur if g1 = gs. This is not so because, as appears from (19.1),
the dynamic components of M and M then compensate each other exactly,
so that the resonance becomes unobservable and therefore physically mean-
ingless. It also follows from the generally applicable equation (19.3) that
there is only one resonance frequency for g1 = go.

Just as with ferromagnetic resonance, the influence of anisotropies can
also be taken into account in ferrimagnetics. As regards demagnetization
there is no difference from the ferromagnetic case: the dynamic demagnetizing
fields, caused by the total precessing magnetization vector, produce a torque
that depends solely upon the orientation of the resultant magnetization
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vector. In other words, we have the ferromagnetic case with g = gesr. The
uniaxial crystalline anisotropy energies for each sublattice are given by the
constants K; and K; respectively, which are equivalent to the fields
H4 = 2K1/M; and H% == 2K2/M>, analogous to (11.7). These fields, then,
are in opposite alignment (always in the same direction as the magnetizat-
ions) hence if H is along the easy direction the effective fields are H 4 HY
and H— H;‘. Apart from a difference in g factor, the resonance condit-
ions now differ once again for the two sublattices. The relative difference
between the precession angles for the low-frequency mode of resonance will
now be of the order of H4/WM, which again, generally speaking, is small.
If, as before, we neglect this difference, we can again speak of the precession
of one rigid magnetization vector in a crystal having an anisotropy of
K=K; + K; or HA = (HAM; + H4M32)/(M1 — M3). Once more we
have g = gest from (19.4). The second resonance frequency is again approx-
imately given by (19.5) for small H4.

All this follows again from equations analogous to (19.1) with the H’s
changed in the manner described above. To conclude we can say that the
resonance conditions for the low frequency mode of normal ferrimagnetic
substances may be calculated just as for ferromagnetic substances.

§ 20. Spectroscopic Splitting Factor g

For pure spin magnetism, the gyromagnetic ratio y governing ferromagnetic
resonance is equal to the y of (3.4), but where orbital magnetism is also
present, it will differ, as we already assumed in § 19. It cannot be said
a priori that the corresponding g factors are equal to the Landé factors
introduced in (6.6). Kittel [Ki 4] has shown, however, that this is in fact
the case as regards the g factor in ferromagnetic resonance (called the spec-
troscopic splitting factor), but not as regards that g factor which governs
the Barnett experiment or the Einstein-de Haas effect.

We must calculate the frequency o of the precession. According to
quantum mechanics, %w is equal to the difference in energy of the two
states between which the transition takes place. In the present case this is
the reversal of one spin. In a ferromagnetic material, in which the spins are
very strongly coupled, there is no complete reversal of one specific spin
but rather a slight tilting of all spins together, such that they remain in
mutually parallel alignment and the exchange energy is unchanged. For a
ferromagnetic substance in a field H we thus have the equation

o = H(AMspin + AMorbit)- (201)
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We shall again, as in § 3.3, consider the case in which, in first approximation,
the orbital angular momentum is quenched, this state being only slightly
perturbed by the spin-orbit interaction. As we saw, the spin orientation in
that case remains unchanged in first approximation, and therefore it can
only be purely parallel or antiparallel to the magnetic field, i.e.

AJspin = h, (20.2)
so that from (20.1) we obtain for y:
. AMspin -+ AMorbit

Y
AJspin
Since all composite vectors remain parallel to each other, we also obtain:
g= 2 (Mspin -+ Morbit)/Mspin- (20.3)

This is thus the same as (6.6), which governs the paramagnetic susceptibility
and the saturation moment.

In (20.1) the change in the mechanical energy of the lattice (rotation) is
neglected owing to its large moment of inertia. The change of angular
momentum of the lattice (4/1attice) need not necessarily be small (compare
with a ball bouncing from a rigid wall). Since evidently in this case 4J =
AJspin = h, then AJornit + AJtattice = 0.

In § 3.3 we saw that Jorni is of the order of (A/4E)h, hence (g — 2)=
A/AE, which is of the order of 0.1 or 0.2. For more than half-filled shells
the spin and orbital momenta are parallel so that g is greater than 2. Since
the magnitude of the orbital angular momentum will also depend on the
direction of the spin momentum with respect to the crystal axes, g can
still be anisotropic.

There is another type of g factor, which also determines the ratio between
a magnetic and a mechanical moment and which is known as the magneto-
mechanical ratio g’. This is the governing factor in the FEinstein-de Haas
effect and the Barnett experiment, in which the change of angular momen-
tum associated with a change of magnetization is measured by suspending
a bar of ferromagnetic material from a thin wire. The bar is magnetized in
the long axis (which is also the direction of the wire) by a surrounding coil
The current is then reversed and this causes the bar to rotate. The g’ factor
is now defined as follows:

(e/2mdg’ = —(AMspin + AMorbit)/AJlattice,

where AJiatice is the change in the angular momentum of the lattice,
i.e. the observable change in the angular momentum of the bar, while
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AMipin + AMorpyt is the change of M. Since the bar is suspended torsion-
free, it follows that

ANastice + AJspin + AJorpie =0,
and therefore, if again we omit 4,

_ Mepin + Mornst
Mapin + 2Morbit”

r

g (20.4)
because the ratio between M and J is smaller for orbital than for spin mo-
tion by a factor of 2. Evidently, then, there exists between the g of (20.3)
and the g’ of (20.4) the simple relation

1

— l, =1. (20.5)

g

Thus if g > 2, then g’ < 2, and vice versa. With most substances, for

which both g and g’ are known, this is indeed the case, but quantitatively
(20.5) is not entirely satisfied, as appears from Table 20.L.

TABLE 20.1
VALUES OF g AND g’ FOR A NUMBER OF FERROMAGNETIC MATERIALS
) 11
g g -+
-4 -4
Iron 2.12-2.17 1.93 0.980-0.990
Cobalt 2.22 1.97 0.986
Nickel 2.19 1.84 0.996
Magnetite FegO, 2.2 1.93 0.973
Heusler alloy CusMnAl 2.01 2.00 0.998
Permalloy Ni78 Fe22 2.07-2.14 1.91 0.991-1.006

For the lowest resonance frequency of ferrimagnetics, (20.1) still holds
for the total moment, since the change of exchange energy can be neglected.
This means that (20.3) also holds for the ferrimagnetic materials. In (19.1)
the s of the different sublattices were introduced phenomenologically.
We see that (19.4) and (20.3) are indentical if we also take for the g’s of the
sublattices

(Mspin + (Miorbit
gi=2 Moo . (20.6)

For low-frequency resonance, then, we may take in (19.4) the values for

g1 and gs according to (20.6), but this has not been proved for the high-fre-
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quency case according to (19.5). It would only be so if we were able to treat
each sublattice quite separately, such that (20.2) would apply to each. In
view of the strong coupling between sublattices, which is much stronger
than that with the external field, it is doubtful whether such a procedure
would be possible.

Instead of (20.5) the relation usually given in the literature is

g—2=2—¢g, (20.7)

which is only equivalent to (20.5) if Mornit <€ Mspin. Thus (20.5) has a more
general validity; the only approximation made to it is (20.2), i.e. the spin
of the electron in an orbit is always purely parallel or antiparallel to the
field. This is only true as regards normal ferromagnetics if the above res-
triction, Morbit <€ Mispin is obeyed, but as regards ferrimagnetics this is not
necessary for the total moment, provided it is the case for the sublattice
magnetizations. This difference is particularly apparent with such nearly
compensated ferrimagnetics as the Li-Cr spinels already discussed. In these
substances g can assume very high values in the vicinity of the compensation
point. It can be seen that g’ — 1, which is evident since then, according
to (20.3), Mypin —> 0, and therefore only orbital magnetism is present.

§ 21. Rotational Susceptibility

In this section we shall examine the off-resonance behaviour of the magne-
tization vector. Rotation can be caused by applying an alternating magnetic
field A at right-angles to the equilibrium position (z axis) of the magnetiza-
tion vector. This produces an alternating torque whose vector is at right-
angles to the magnetization vector, the latter being, apart from a constant
factor, equal to the angular momentum vector. The equation of motion
(18.9), in the case of the energy (18.8) being on principal axes (Ezy = 0),
can be written for small angles as:

21.1
ioMds — yEndy— yMhy, @11

which follows by adding to (18.8) the term —M(hz$s + hyéy). From
this we obtain

M¢x =E22hz - (in/)’)hy , M¢y _ (in/’y)hz + Ellhy’
; (w0r? — ?)y?

where w,? = y2E11FE23/M?2, corresponding to a susceptibility tensor of
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Xoz = VBl — ) Yoy =—ieyM(ef—ad) o
Xyz = iwyM/(wr® — w?) Xyy = V2Eu /(0 — w?) )

The tensor is Hermitian and thus has real eigenvalues, in accordance with
the fact that we have not taken damping into account. The off-diagonal
elements are opposed. For elliptically polarized signals one finds from
(21.1) the combinations

(ha/y E11) % i (hy/{ E22)

CO:er

(¢s/Y Ez2) £ i ($y/Y Er1) = ¥ (21.3)

It follows from this that an elliptically polarized field with axial ratio
VE11/VE22 excites an elliptical rotation with exactly the opposite axial
ratios (the largest field being required in the stiffest direction). It depends
upon the sense of rotation whether, at a specific frequency, resonance will
occur (xy = oo) or not. Resonance will always be excited in the case of a
linearly polarized signal, since we may look on this as the superposition of
two opposing elliptical rotations, in agreement with (21.3). For a linearly
polarized magnetic field 4z, practically all that is excited at low frequency
is an my in phase with 5. At higher frequencies the alternating magneti-
zation is elliptically polarized owing to the fact that one of the ellipses
becomes predominant, m, still being in phase with A;. At resonance, one
of the ellipses then being practically infinitely large, m, goes over into anti-
phase after which m, decreases faster than my, so that at very high frequen-
cies the magnetization is linearly polarized in a plane at right-angles to the
field. The latter phenomenon can be interpreted according to (21.3) by
saying that at low frequencies the two oppositely rotating elliptical vibra-
tions are in phase with the field, while at very high frequencies only one of
the two has passed resonance and has rotated 180° in phase, so that super-
position now yields a linear signal at right-angles to the first.

§ 22. Wave Propagation in Magnetized Media
22.1. THE WAVE EQUATION

The consequences of the non-diagonal form of the susceptibility tensor
(21.2) as regards wave propagation were first studied by Polder [Po 1].
The wave equation, as found from the Maxwell equations, can be written
for an infinite medium having a dielectric constant e:

¢ 02B

AH —graddivH— — — =0, 22.1
grad div prirer (22.1)
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Since the magnetic permeability is not isotropic, div H = 0 does not hold.
In order to solve (22.1) we must know the relation between B and H. In
agreement with (21.2) we assume for the alternating components of B and
H (indicated by small letters):

p —ix O
b=\|ix p O|h (22.2)
0 0 1

corresponding to E11 = Epz2 in (21.2). In (22.2), b and k are the alternating
components of the internal field-strengths, and therefore external demag-
netization, for example, is left out of consideration in determining p and «.
The solution we calculate for (22.1) has the form of a travelling wave and
hence we assume that the time and place dependence of b and A can be re-
presented by that of a factor exp i(kr — w?), in which k is the wave vector
of magnitude 2x/A. This is no restriction, because any function of place
and time can be expanded in these waves with the aid of Fourier analysis.
For the three components of & eq. (22.1) then becomes:

( w?ep
\ 2

wZEK
— kyz—kzz) By + (kxky—— i ) hy + kakohs = O
C

w2ep

2
(k,,ky + z‘"—c:—") he + ( et k22> By + kylshs = 0 S (22.3)

2
koo + kykohy + (‘i;;— kot — ky2> B, =0

These are three homogeneous equations in 4y, hy and h,, and thus they
only yield a solution if the determinant of the coefficients is zero, which gives
a relation between k and w.

We shall now examine some simple examples, taking first the case in
which the wave is propagated in the direction of the magnetization (ks =
ky =0, k; = k). We then find

2,
k=0 ek o). (22.4)

These two solutions correspond to circularly polarized waves with a rota-
tion respectively equal and opposite to that of the natural precession of
the magnetization vector, as follows from substitution of (22.4) in (22.3).
The quantity (u + «) is the permeability for circularly polarized fields, so
that (22.4) has the same form as for a medium with isotropic p.

We shall determine p and « occurring in (22.4) for the simple case in
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which a static field H is present in the z direction, possibly to be substituted
by an anisotropy field H4. For a uniformly precessing magnetization vector
we can then calculate p and « from (21.2), in which Ej; = Ess = HM
and wy = yH, hence

4= M _B:}: wly
Htoly Htoly

Owing to wave motion, however, the magnetization is no longer uniform,
and a given spin will be subjected not only to the torque exerted by the mag-
nectic field but also to a torque caused by exchange interaction. As a result
the motion of the spin vector is changed, and with it the susceptibility.
We shall examine this quantitatively for slow variations of the spin orien-
tation (2#/k being much larger than the lattice parameter). The exchange
energy between two neighbouring spins 1 and 2 is according to (5.1) pro-
portional to the scalar product $1.52. The torque T which they exert on each
other will be proportional to the vector product of S and Ss:

pte=1+4 (22.5)

T oc S1)<S2

The total torque acting on the magnetic moment of an atom follows from
summation of the torques exerted by the moments of the surrounding atoms.
In the case of the neighbouring spin S2 at a distance R we can write for a
slow variation of the spin orientation

Ss =81 + (RV)S + 3RV)2S + ...

where § is taken to be a continuous function of position in the lattice and
where the derivatives at the position of the central atom must be taken.
In the summation of the torques the odd terms in R cancel each other out
for a lattice with a centre of symmetry. For a cubic lattice in particular the
torque, now expressed in terms of the magnetization, assumes the simple
form

T =AM X AM, (22.6)

where 4 is again the Laplace operator, and 4 a constant. The torque for
the travelling waves considered here is
T = Ak*M X m, (22.7)

where m is the variable part of the magnetization vector. The torque (22.7)
would also be produced by a static magnetic field parallel to the magneti-
zation of the magnitude

Hez == AkzM.
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The resultant permeability can be found quite simply, then, by substituting
H + H,, for H. If this is done in (22.5) we obtain for (22.4) in this case:

w2€ 47TM
k2 =m( 1+ ) , (22.8)
c? H 4+ AMK2 4 o]y

which is now a quadratic equation for k2. If the half wave length is equal to
the lattice parameter, it then follows from an impermissible extrapolation
that the field AMk2 is of the order of the Weiss field 2107 oersteds, hence
AM = 1079 oersteds cm?2. If the denominator in (22.8) is not nearly zero,
i.e. for values of w < yH, the form between brackets in (22.8) is of the order
of magnitude 2. For microwaves (e = 1011/sec), where ¢ = 10, k2 is of
the order of 102, so that the exchange field is only = 10-7 oersteds, which
is negligible compared to H (=103 oersteds). If w approaches yH, then
without the exchange field the right-hand side of (22.8) with the minus sign
would be infinite, and with it k2. The exchange field prevents this. If w > yH,
the denominator in the right-hand side of (22.8), without exchange field,
is negative for this resonance mode. In that case it can be made positive
again by the exchange field. This happens for fairly large values of k2,
larger than that for » = yH which, according to (22.8), is of the order
of 107. Consequently the factor between brackets in (22.8) must be at least
of the order of 105 for w > yH. This means that, in very good approxima-
tion, the denominator is zero, hence

w = WH + AMK?). (22.9)

This is the frequency of the so-called spin-waves, first introduced by Bloch,
and it thus depends quadratically on k. For w > yB the right-hand side
of (22.8), also without exchange field, becomes positive again — see (22.5) —
and therefore there is again a solution with small k2, in which the exchange
field is negligible. For the oppositely precessing mode, (22.8) is always
positive, i.e. k2 is small and again of the order of w2e/c2, so that in this case,
too, the exchange field can be neglected. We have shown, then, that (22.8)
gives two kinds of waves as solution, namely electromagnetic waves, for
which the exchange energy can be neglected, and spin waves, for which
the electromagnetic energy is negligibly small and only magnetic and
exchange energy enter into account. Both kinds of waves, which we
now propose to examine separately, gradually merge (see Fig. 22.1).

22.2. ELECTROMAGNETIC WAVES

For electromagnetic waves in the z direction (22.8) becomes
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a b

— kxz

Fig. 22.1. Frequency of electromagnetic waves () and of spin waves (b)
as a function of the wave number k. The scale for k in (b) is at least a
factor 106 smalier than in (a).

, % B+ wfy

A et A (22.10)
2 H4 owfy

Above resonance (w > yH), the magnetization is in antiphase with the
field and therefore the rotational susceptibility is negative. Where w << ¥B
this also results in a negative permeability and, apart from spin waves, no
wave propagation is possible, Where w = yB, according to (22.5) the
permeability becomes zero (antiresonance). Above this point, wave propa-
gation is again possible. The oppositely rotating mode exhibits no resonance
and here, therefore, the magnetization is always in phase with the field.
The permeability varies continuously from B/H at low frequencies to unity
at high frequencies.

A linearly polarized electromagnetic field can be split up into two opposi-
tely rotating circularly polarized fields. For propagation in a direction par-
allel to the static magnetization vector, the wavelength of these two com-
ponents will differ. Over a distance / the magnetization vector of the one
component will thus have rotated through a different angle from that of
the other. If, then, we again combine them into a linearly polarized signal,
the polarization plane will have rotated through an angle g, which is given by

B/l = (ks — k-) (22.11)

Below resonance (w< yH) a rotation thus takes place which is in the
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opposite sense to that above antiresonance (w > yB). This so-called Fara-
day rotation (22.11) can be computed from (22.10) as a function of the
frequency. For high frequencies (w > yB) we find

BII= y.4nM . ye/c, 22.12)

which is independent of the frequency and proportional to the magne-
tization. For many ferrites 4=M; = 4000 gauss and ¢ = 10, which means
that in ferrites a Faraday rotation may occur of the order of 360°/cm.
Consider now the case of waves which propagate in a direction at right-
angles to the direction of magnetization, e.g. ky = k, = 0, k; % 0. We then
find apart from a non-magnetic mode with k2 = w2e/c2, a mode with

w2 u?— k% w2 B2— w?/y?

*T ez i) T e BH — w?[y2

(22.13)

Resonance occurs here for w = ) BH, which is a consequence of the fact
that the magnetization, owing to the wave motion in the x direction, is
subjected to a demagnetizing field corresponding to a demagnetizing coef-
ficient of 4. Here, too, an electromagnetic wave at resonance goes over
into a spin wave, with, for cubic materials, the same dependence on k2
as in the case of spin waves in the z direction. Electromagnetic waves in
the x direction give rise to the Cotton-Mouton effect [Du 1], also familiar
in optics.

Up to now we have calculated the propagation only in an infinitely large
medium, without taking account of boundary conditions. These are the
normal boundary conditions of Maxwell’s theory, namely that on any
surface the tangential components of H and E and the normal components
of B and D are continuous. As was first shown by Van Trier [Tr 1], these
conditions can radically modify the properties of wave propagation. For
example, in the case of a thin rod, whose thickness is small compared with
the wavelength and which is magnetized along its long axis, the resonance
frequency for waves propagating along the axis of the rod is equal to y(H +
27 M), corresponding to the frequency for ferromagnetic resonance. In the
latter case the wavelength is also assumed to be large in comparison with
the dimensions of the body.

22.3. SPIN WAVES

In § 22.1 we saw that for small k£ a spin wave has a frequency between yH
and y}BH, depending upon its direction of propagation. In this case the
wavelength is much smaller than the dimensions of the body (k > 103)
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and therefore the boundary conditions are unimportant. Nevertheless, we
must take into account here that the fields used in Fig. 22.1 are the internal
static fields, Hy, i.e.

Hy=H.— NM, (22.14)

where the external field H, always lies between H; and }BiH:.

Spin waves describe the internal motion of the magnetic moments. In
this respect they may be compared to sound waves (Debye waves) or to
lattice vibrations in solids. The sound waves form, as it were, a Fourier
spectrum of the individual movements of the atoms. Owing to the mutual
coupling of the atoms, their movements are to some extent correlated. This
coupling, together with the mass properties, gives rise to wave propagation.
In the case of spin waves the same coupling exists between neighbours, but
the mass properties are lacking. Instead, the motion of the spin vectors is
now essentially more dimensional (see § 18), so that there are still two de-
grees of freedom, and therefore free oscillation is possible and hence also
wave propagation. In the case of electromagnetic waves it are the electric
and magnetic energies which, at each point, periodically go over one into
the other.

The lattice vibrations are quantized, that is to say the amplitude of a wave
with a certain frequency can only increase in certain finite steps, so that the
energy of the wave increases by equal amounts hw. The energy is then

E, = (n + Hho, (22.15)

where n > 0. The lowest state for » = 0 corresponds to the zero-point
vibration of a crystal, i.e. of the individual atoms, since, having regard to
Heisenberg’s uncertainty principle, an atom cannot stand still (dx =
4p = 0). Even if we assume no correlation with the movement of neigh-
bouring atoms, an atom still moves in a potential well, i.e. it has positive
energy with respect to the state with zero amplitude and velocity because
the energy quadratically contains the coordinate and the velocity. This
energy appears to be }Aw for the Fourier component with angular frequency
w. From an exact calculation of the spin waves it appears that a similar
quantization occurs for these also. This is connected with the fact that, as
we saw in § 3.4, the z component of the total angular momentum can only
change by an integral multiple of /. The zero-point vibration of spin waves
corresponds to the zero-point motion of the individual spin moments, which
is discussed in § 3.4. Although spin waves have a zero-point vibration, it
makes no contribution to the energy since this, apart from the magnetostatic
energy, consists of the exchange energy between the spins of neighbouring
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atoms:
Eox = —N(Slzszx + Slys2u + SleZZ) . (22-16)

In the ground state the average value (expectation value) of Si; = Sz,
is 4, while the expectation value of Sz and Sy for both spins is zero. Owing
to the essential lack of correlation between the zero point motion of the
individual spins, the deviations from these values make no contribution
to (22.16), since this equation only contains products of the spin compo-
nents of different electrons. Similar reasoning applies to the magnetostatic
energy —HM, which is proportional to —HZS;i..
The energy with respect to the ground state then becomes

Eyp = nfiw = nhy(H + Hex) = 2npp(H 4 Hex). (22.17)

The reduction of the spontaneous magnetization with increasing tem-
perature can be described in terms of spin waves. The creation of each spin
wave (increase of n by 1 in (22.17)) causes the magnetization to change by
2u 5, and therefore a spin wave can be thought of as a reversed spin moving
through the crystal. Since a spin can be reversed once only, spin waves tend
to repel each other. In the given phenomenological derivation this interac-
tion is neglected, so that the spin wave theory applies only to temperatures
far below the Curie temperature, where the spontaneous magnetization
M, still differs but little from the magnetization Mo at T = 0 and there are
very few spin waves. The degree of spin-wave excitation is then governed
by the so-called Bose-Einstein statistics, just as for lattice vibrations, and
is given by

nx = [exp (hwr/kT)— 1171 (22.18)
The reduction of the magnetization is equal to

Mo— My =2Z mps .
k

The possible values of & are uniformly distributed over the k space. Ac-
cording to (22.18), at low temperatures only those states are notably excited
(i.e. where n is of the order of unity) for which hwy << k7. The number of
excited spin waves, then, is approximately proportional to ko3, where ko
is the wave number for which Awi = £T. From this and (22.18) is derived
the Bloch 73/2 law (6.21) for the magnetization-temperature curve. The
magnetic component of specific heat has also to obey a 732 law as has
been found experimentally for magnetite by Kouvel [Ko 2].
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§ 23. Damping
23.1. GENERAL PROPERTIES OF COMPLEX SUSCEPTIBILITY

Owing to the damping a phase shift occurs between the applied alternating
field and the alternating magnetization to which it gives rise. As a result
the alternating magnetization is not purely in phase or in antiphase and it
is possible, therefore, that an energy dissipation [h.m dV will occur. If the
complex notation is applied for the sinusoidally varying quantities, the damp-
ing and hence the phase shift find expression in the susceptibility becoming
complex:

x=x—ix" (3.1

in which x' and x” are real functions of w. Here ¥’ is proportional to the
component of m which is in phase or in antiphase with A, while x’ gives the
90° phase-shifted component of m. In principle, (23.1) holds for each com-
ponent of the susceptibility tensor. For linearly polarized signals the energy
dissipation per cm3 is:

dw

e (23.2)

If there is no damping, x"’ is zero for all frequencies, except at resonance,
when x" becomes infinitely large. Owing to damping, this peak function is
widened and lowered. Further, y’' = 0 where w =0, i.e. for very slow var-
iations the energy dissipation per cycle is zero. This holds for those processes
in which equilibrium always prevails throughout very slow variations, that
is to say we exclude hysteresis, as we can do for small amplitudes. Before
discussing the mechanism of damping, we shall first consider some pheno-
menological relations.

If the applied field # varies arbitrarily with time the resultant 7 can be
found by expanding 4 in a Fourier integral. For each Fourier component
the magnetization can then be found with (23.1), so that by integration over
@ the total magnetization follows as a function of time. If in particular we
apply a field which is zero for 7 << 0, the same must also hold for m, irre-
spective of the further trend of 4. This establishes a certain relation between
x" and x" which can be represented by the Kramers-Kronig relations:

[e0) (e8]
2 w " w -2 w ! w
X(w) == / X ey ( lg doi  x'(w) = — / e ¢ 1)2 do1 (23.3)
[ wl® — w T, w1 w
] [

Thus, if either x’ or x is given as a function of frequency, y' or y' is then
determined. The relations (23.3) hold for each of the tensor elements of
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(22.2) separately, since the above considerations are equally valid if m and
h are not in the same direction. The tensor element yzy in (22.2) is already
imaginary without damping. If the stiffness is anisotropic and the x and y
axes do not coincide with the principal axes of the energy, an equal, real
partis added to xzy and yyz, so that these are then respectively of the form
a— ib and a + ib. Where damping is present, a changes into a’ — ig” and
binto b’ — ib". As a result the matrix is no longer Hermitian (it had already
ceased to be Hermitian when (23.1) was introduced for the diagonal elements)
and therefore the eigenvalues are complex, corresponding to signals decreas-
ing exponentially with time and to energy dissipation. While (23.3) holds
for a’ and @”, the relations for " and b’' are

0]

b( ) L”(_wl_) dw: b“( ) ”/‘% dew; (23.4)

0

that is where
$(xoy + Xyz) = @' — ia” and § (Xzy — xy2) = b —ib".  (23.5)

In (23.3), x"' is automatically zero for » = 0, in agreement with the above.
In (23.5) this is not the case for the damping term b"'; here b’ is automatically
zero for w = 0. Nevertheless, b’ must also be zero for w = 0, as follows
from the more general formula for the energy dissipation

dw

- IRe iw| xzalhal? + Xavhz*hy + Xyzhohy* + xuulhyl?]. (23.6)

The cross term according to (23.5) is
wRe(a”’ — ib"Yhz*hy. 23.7)

If b % 0 for w = 0, then (23.7) is the only remaining term. The losses
for elliptically polarized signals are then proportional to b” (since hz*hy
is imaginary for this term). By, for example, changing the sign of 4y (oppo-
site sense of rotation) we change the energy dissipation into a generation
of energy per cycle, so that 5" must be zero for w =0. For v = 0 this gen-
eration of energy as a result of the " term is indeed possible, but in that
case the other terms in (23.6) ensure that there will still be dissipation in
the total result (eq. (23.6) is positive definite). For rotational fields in an
isotropic medium the energy dissipation is
aw

A e (23.8)
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A useful expression for the area of the absorption peak follows from the
first equation of (23.3) for w = 0:
o0

/ (o) d (In w) =’—ZT X (0). (23.9)

w=0

A magnetization process that contributes by a given fraction to x'(0) will
contribute by the same fraction to the area of the absorption peak if the
frequency is plotted logarithmically.

23.2. PHENOMENOLOGICAL DESCRIPTION OF DAMPING

In order to describe damping, various terms are proposed which must be
added to the equation of motion. In their classical paper [La 1], Landau
and Lifshitz originally put the equation of motion as:

M = y(MxXH)— (ay/M)M X (M x H) (23.10)
which, as can easily be seen, is equivalent to
M = y(1 + o2) (Mx H)— (o/ M) (M X M). @23.11)

In (23.10) the damping term consists of a vector at right-angles to M in
the direction of the resultant magnetic field H and proportional to the sine
of the deflection angle of the magnetization from the direction of H, so
that the magnetization vector is forced back towards the direction of the
field. In (23.11) the viscous character of the damping term comes more to
the fore. Both damping terms leave the absolute magnitude of M unchanged,
as appears from the scalar multiplication of both sides of the equation by
M. The correction to y in (23.11) is in the main unimportant, since « is of
the order of 10-2. The damping constant « can also be a function of the
static field Ho.

The damping terms from Bloch’s theory of nuclear spin resonance were
applied by Bloembergen [Bl 1] to ferromagnetic resonance. The damping
torque is put proportional to the deviation of M from the equilibrium posi-
tion. The Bloch-Bloembergen equation is

M= yMXH)— ay(MH— MH) (23.12)

corresponding to a relaxation time = = 1/ayH.
The damping term in (23.10) can be written as

HM
— M- ——MH)|.
“’[ M }
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We shall see in § 24.2 that the damping terms discussed here only apply
when the rotations of the magnetization vector are small; when they are large
there can no longer be any question of a rigid magnetization vector. Without
loss of generality, then, we may put HM equal to HM, so that for small a
the damping terms of Landau and Lifshitz, the viscous damping term and
that of Bloch-Bloembergen are all identical. For the sake of simplicity of
notation, we shall henceforth use only (23.11), in which the 2 term is neg-
lected. In the case of a non-cubic medium, different values of « may occur
in the x and y directions. For the susceptibility tensor we then find

M (w1wz — wws . wwsdw
zz = —1
X Y (wiws— 0?2 + 0¥ (dw)? (w1w2— w?)2 4 w(dw)?
(23.12)
. (w1w2 — 0w . w2dew
Xzy = -"l'yM —1
(wiwz— 0?)? + 0¥ (dw)?  (wiws— ©2)2 + w¥(dw)?

and similar expressions for yyz and yyy. Here w1 = yEn/M and wp =
‘yEzz/M and

aiw1 + aswg = dw (23.13)

which is the line width measured between the points where y” has dropped
to half the maximum value. This maximum value of yz." is related to the
line width according to

(xzz' Ymax . dw = yM V:—z . (23.1%
1

23.3 DAMPING THEORY

The microscopic theory on the damping of ferromagnetic precession was
first put forward by Akhieser [Ak 1]. The deviation from the equilibrium
position is described in terms of spin waves. On the other hand the thermal
agitation of the atoms in the lattice is described in terms of lattice waves,
and thus they may both be regarded as the terms of a Fourier series of the
non-periodic perturbations of the magnetization and of the atomic ordering,
respectively. Quantization gives these waves the character of particles
with an energy fiw. These energies can be of the same order of magnitude,
namely at maximum kT¢ and kTp, where Tc is the Curie temperature and
Tp the Debye temperature. The wave numbers multiplied by / are to be
regarded as the momenta of the particles.

The atomic magnetic moments are coupled by exchange interaction and
dipole-dipole interaction. Moreover, the spin-orbit interaction gives rise
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to an effective coupling between the magnetic moments which is somewhat
similar to dipole-dipole interaction, and to which Van Vleck [Va 2]
therefore gave the name “pseudo dipolar interaction”. Owing to the fact
that the above-mentioned interactions are strongly dependent on the inter-
atomic spacing, interaction will result in a deformed crystal between the
spin waves and the lattice waves. As a consequence, the spin waves may
vanish and lattice waves be created, or conversely. The two most important
processes can be represented schematically as

s+sZland s+ 15 s (23.15)

In the first, two spin waves are annihilated and one lattice wave is created, or
vice versa, and in the second a spin wave and a lattice wave together go over
into another spin wave. In these processes the total energy as well as the total
momentum must be conserved, which implies a severe restriction of the
number of possible processes. For this reason, to give an example, it is not
possible for a single spin wave to go over into a single lattice wave, since if
the wave number is the same the energy will be different and vice versa.
There must, then, always be at least three “particles” involved in the process.
The magnitude of the interaction is connected with that of macroscopic
phenomena. Thus, the dependence of the exchange energy on the interatomic
spacing gives rise to volume magnetostriction (see § 13.1), and that of dipolar
and pseudo dipolar energy gives rise to linear magnetostriction. Volume
magnetostriction being essentially a much larger effect than linear magne-
tostriction, it was found by Akhieser to give the more important coupling
mechanism. In fact, Akhieser took only the true dipolar energy into account,
but multiplication by a factor of 50, which gives approximately the ratio
between pseudo and true dipolar energy, leaves this conclusion unchanged.

The interactions described above can cause a state of non-equilibrium to
return to the state of equilibrium, and in the process the magnetostatic and
exchange energies are converted into lattice vibration energy. For a return
to the state of equilibrium it is necessary that the spin waves should vanish.
This is only possible via the first process of (23.15). The variation of the
exchange energy with interatomic spacing cannot give rise to these processes,
since the exchange energy depends solely on the mutual orientation of the
spins and not on the orientation in space of the resultant spin. Conversely,
therefore, the exchange cannot change this orientation. The relaxation time
is accordingly governed via processes which are connected with linear
magnetostriction, as treated in the theory of Kittel and Abrahams [Ki 5].
The calculated relaxation time =, which can be identified with (ayH)1
in a resonance experiment, appears to be of the correct order of magnitude
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if one assumes that in the non-equilibrium state the occupation of all levels
differs from that in the equilibrium state, such as for example the distribution
pertaining to a temperature different from the ambient temperature. Polder
[Po 1] has pointed out that this does not correspond to the circumstances
in a resonance experiment performed on a small specimen within which the
externally applied alternating field is uniform. One then excites, as it were,
spin waves with k& = 0, so that in the first instance only the distribution of
these spin waves will deviate from the state of equilibrium. The interactions
described above cannot then occur, since to do so the wave number as well
as the energy of the other spin wave and the lattice vibration would have
to be equal. The energy transfer would then have to take place in processes
involving more than three particles, which is improbable. In such a case the
relaxation time would become much longer.

It has been pointed out by Clogston et al [Cl 1] that, apart from dynamic
perturbations, static deviations from lattice periodicity can give rise to tran-
sitions. These are found, for example, in ferrites in which two different
magnetic ions occur disordered at equivalent lattice points, resulting in
non-periodic perturbing magnetic fields of appreciable magnitude. These
can change the wave number of a spin wave, but the energy remains con-
stant thereby, comparable with the scattering of conduction electrons on an
impurity in a solid. For a sphere, ferromagnetic resonance occurs when
w = yH,, where H, is the external field. Owing to the demagnetization in
the z direction, (22.14) applies. The fields used in Fig. 22.1 are the internal
fields Hj, which is to say that the frequency for ferromagnetic resonance
lies between the values of the two o versus k curves extrapolated to &k = 0,
and the value w = yH, is degenerate with a large number of spin waves
with a finite k value. This difference in behaviour between spin waves and
the k = 0 waves at ferromagnetic resonance is due to the fact that the ferro-
magnetic resonance frequency is increased by the dynamic poles arising at
the edges of the specimen. These also arise in the case of spin waves pro-
pagated in the z direction, but they then change sign with a wavelength
equal to that of the spin wave. The demagnetizing fields thus practically
cancel each other out at distances that are large with respect to the wave-
length, so that in effect the frequency of the spin waves is not influenced
by the finiteness of the crystal.

Once these spin waves with the ferromagnetic resonance frequency are
excited, the excitation spreads out rapidly by the normal Akhieser processes
over the entire spin wave spectrum, and interaction with the lattice can take
place. The bottleneck lies in this first transition, which is believed to deter-
mine the relaxation time. Owing to the increase in perturbing fields when
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the magnetization is increased as a result of lowering the temperature, there
occurs an increase in 1/= and hence in line width.

Apart from a dependence upon the degree of ordering, this theory also
predicts a dependence of = on the shape of the specimen. For the flat disc
which is magnetized at right-angles to the plane of the disc, the resonance
field is equal to the internal field, since the poles on the edges are of no sig-
nificance here. In other words, this frequency coincides with the lowest spin
wave frequency and no degeneracy occurs. With this shape of specimen,
therefore, a longer relaxation time and hence a narrower line will be found.

' 23.4. INSTABILITY AT LARGE AMPLITUDES

The qualitative considerations discussed above were applicable to the damp-
ing mechanism described by (23.11), i.e. where the constant a is independent
of the amplitude of the signal. If this equation were also to apply to large
amplitudes, the maximum value of " would then be independent of the
deviation from static equilibrium until the angle of deviation of the magneti-
zation vector had reached 90°. This is the case when the amplitude of the
alternating field is equal to the line width 4H = 2aH (see (23.13)). From
experiments by Bloembergen et al [BI2] it appears that non-linear phenomena
already occur at amplitudes of the alternating field of the order of 1/50th
of that value. The absorption curve then becomes lower and wider, as if a
had become larger. Suhl [Su 3] has shown that this is the consequence of a
stronger coupling of the ferromagnetic resonance mode with some of the
spin waves having the same frequency, which coupling already existed owing
to the Clogston mechanism. A spin wave superimposed on the uniformly
precessing magnetization vector, having the same frequency and being
propagated along the z axis, becomes unstable and grows larger at a specific
amplitude of the alternating field. It appears that if 4mdM.= 4H, where
AM, is the change in the z component of the magnetization as a result of
the precession and 4H is the line width, standing waves are created, i.e.
the magnetization vector no longer remains stretched during precession.
For the magnitude of the microwave field k. this condition is

e~ AHY4H[4zM . (23.16)

It further appears that these demagnetizing fields in the direction of pro-
pagation of a spin wave may also give rise to spin waves with a frequency
equal to half the frequency of the external field, if the alternating amplitude
m* of the still uniformly rotating magnetization vector satisfies

4am+ sin 6 cos § > AH,
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where 8 is the wave vector angle of the spin wave with the z axis. This is
first satisfied for 8 = 45°. The instability, which manifests itself as an
extra absorption peak, is noticeable with static fields that are some hundreds
of oersteds lower than the resonance field. In first approximation we may
write for the critical value of the external field

he ™ (0 — w)AH]y . 2nM. (23.17)

§ 24. Dynamics of Domain Boundary (Bloch Wall) Movement
24.1. WALL INERTIA

The applied field, parallel to the mag- y
netization on one side of a 180° wall,

exerts a torque on the spin vectors in-

side the wall. This does not, however, @
directly cause wall displacement, since Y s
the spin vectors are turned by the ex-
ternal field in a directionat right-angles
to the plane of the wall, whereas in \
order to move the wall a rotation of —n
the spin vectors is necessary in a plane

parallel to the wall. The angle of

movement from the plane of the wall

obeys the relation

6 = yHsin ¢, (24.1) ) . .

Fig. 24.1. Schematic representation

(see Fig. 24.1). This movement can give of a spin vector S, inside a moving

rise to a torque, represented by a vector wall, moving out of the plane of the

in the plane of the wall, which may wall

turn the magnetization vector in that plane and so cause the wall to move.

This torque, for small values thereof, will be proportional to 6, hence

24

Mp=ML v=cC.9 (24.2)
0z

where C is a constant of proportionality, which can still be a function of the
position (z) in the wall. In (24.2) it is assumed that, apart from 6, the wall
moves undeformed. By differentiating (24.2) with respect to time we find,
with the aid of (24.1), that the acceleration (v) of the wall is proportional
to the applied pressure 2 HM. This means that the wall has inertia [Do 1]
and therefore mass can be attributed to it. We shall not give the calculation
in detail, but simply explain its results.
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The torque C8 in (24.2) consists of three parts, due to exchange energy,
crystal energy and, as an extra contribution, a torque caused by demagneti-
zation. In the z direction a magnetization M# is present only inside the wall.
Outside the wall we have M, = B, = 0, and therefore inside the wall, too,
B, must be equal to zero. As a consequence of this, a demagnetizing field
arises of the order of

Hz == —47TMz = _47TM5 . 0.

This gives a torque MH,, at right-angles to the magnetization vector at the
position of the wall. The torque of the exchange interaction is of the form
of (22.6) which for the component considered here, becomes AM2d20/dz2.
The crystal anisotropy torque is 2K 6 cos? ¢. As explained in § 15, we may
write for the exact 180° wall configuration in a uniaxial crystal

sin ¢ = 8y . (04/02) = 1/cosh(z/8y), (24.3)
where 8, is the wall thickness. A short time ¢ after applying the field
the applicable expression, according to (24.1) is

0 = yH t.sin ¢. (24.4)

If, using (24.3), we calculate with this value the component of the total
torque in the plane of the wall, we find

Ty = (HA + 4nM; + H cos $)Ms . 6. (24.5)

The part H4 in the form between brackets originates from the exchange
energy and the crystal energy together, while the term 47M originates from
the demagnetizing field in the z direction. The term originating from the
external field is negligible for the calculation of the acceleration. According
to (24.3) and (24.4), d¢/dz and 6 depend in the same way upon z, so that
the notation in (24.2) with a uniform v is permissible. From (24.2) and
(24.5), then, we obtain for the velocity v of the wall, for short times ¢,

v = y28,H(HA + 47 M;)t, (24.6)
and therefore the mass per cm? of the wall is
my = [2ay28,(1 + HafdwMs) 1L (24.7)

The special point to be noted here is that the mass is inversely proportional
to the thickness of the wall.

24.2. DAMPING OF THE WALL MOVEMENT

The movement of the domain boundary is subject to damping, so that some
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time after the application of the field a stationary state will be reached, in
which the wall moves with constant velocity. We assume that the rotation
of the magnetization vectors inside the wall can be described by a damping
term as in (23.11). However, it is not certain that a will have the same value
as for ferromagnetic resonance, since in the latter case the magnetization
is practically uniform. For wall movement the description with spin
waves is no longer adequate, and therefore the Akhieser theory cannot be
applied here. If nonetheless we use the damping term from (23.11), then in
the stationary state this torque must be neutralized by the torque exerted
by the external field H, as indicated in (24.5). The damping torque in this
direction becomes aM;08/dt = aM;(d8/dz) . v, hence

Hcos ¢ .0 = a(d8/02)v.

Now in the stationary state, too, 6 is proportional to sin ¢, as in (24.4),
and therefore in the stationary state the relation between the velocity of
the wall and the applied field is

v = (ySy/a)H. (24.8)
If we put for the equation of motion of a 180° wall

mwZ 4+ Bwz = 2MH, (24.9)

where Buwz = Buv represents the damping term, it then follows from (25.8)
that

Buw = 20My/ySuw. (24.10)

Where o — 10~2, H = 10 oersteds and 8,, = 10-5 cm, the velocity of the
wall follows from (24.8) as approximately 2000 m/s, which is thus of the
order of magnitude of the speed of sound. Inside the wall the magnetization
is not uniform and deformation will occur of the same kind as volume
magnetostriction. The wall movement, then, will be associated with the
propagation of a sound wave. Accordingly, the velocity of the wall will
show a dispersion near the speed of sound in the material. The maximum
value of the angle 6 in the centre of the wall is of the order

Omax = Hjo(HA + 4nMs),

which, where HA~ 0 and 47=M, = 4000 gauss, is here of the order of 15°.
For larger fields the given derivation is thus no longer valid and an increase
in B, may be expected.
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24.3. WALL RESONANCE

It may be assumed that the wall is bound to its equilibrium position with a
certain stiffness. The equation of motion (24.9) then becomes

Mw? + Buwz + az = 2M.H (24.11)

For small damping (8,2 <€ amy,) this equation predicts the occurrence of
wall resonance with an angular frequency

wr = Ja/my (24.12)
The stiffness a is related to the low frequency permeability po by
a = 167 M2 [l(no—1) (24.13)

where [ is the thickness of the domains.



CHAPTER VII

METHODS OF MEASURING
FERROMAGNETIC PROPERTIES

§ 25. Measurement of Magnetization
25.1. INDUCTIVE METHOD

For measuring magnetization several methods can be used which are based
on the various physical laws. One of these is the induction law (2.1). The
most common method of measuring magnetization is the ballistic method.
The specimen takes the form of a prolate ellipsoid, since in that case,
when the external field is uniform, the internal field is also uniform and
hence the magnetization too. The experimental set-up is shown in Fig. 25.1.
Inside the large coil which supplies the static field Hp is mounted a short

Fig. 25.1. Arrangement for ballistically measuring the magneti-
zation of a prolate ellipsoid.

coil which encloses the specimen as narrowly as possible and which is con-
nected to a ballistic galvanometer. In series with this small coil is an
identical but oppositely wound coil, which is set up at some distance
from the specimen but is nevertheless still in the static field. Changes in
this field then produce no flux change in the galvanometer circuit. The
specimen is now withdrawn from the coil so as to give rise to a flux
change per turn of:

4@ = [ (B — Hy)dA,
where
B=Hy-+ Hp + 4nM.

The field Hp is proportional to M (see Fig. 1.2) so that M can be calculated
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from the maximum deflection of the galvanometer. If the measuring coil
does not tightly enclose the specimen, the measured flux will also include
some stray field outside the specimen. When the diameter of the measuring
coil is small compared with the length of the specimen, we may assume to
a good approximation that the external stray field inside the measuring coil
is still practically equal to the demagnetizing field Hp inside the ellipsoid
so that the correction can easily be applied.

This method can also be used for making an alternating current measure-
ment by letting the specimen vibrate at the boundary between two oppositely
wound measuring coils; this induces in the coils an alternating voltage
which is proportional to the magnetization and the velocity of the specimen:

E o« QM[dz)v,.

This method can beused [Ool ]for measuring the magnetization of very small
specimens. The magnetic moment can be treated as that of a point dipole,
in which case the field inside the measuring coils can easily be calculated
with the aid of (12.3). It is also possible to calibrate with a specimen having
a known magnetization.

So far it has been assumed that the magnetizing field is constant. The
field can also be varied, for example stepwise by abrupt changes. The in-
duced voltage is then due not only to the change in the magnetization of
the specimen, but also to the change in the primary field. If the measuring
coil fits exactly around the specimen, the change of B in the specimen is
measured directly. This method has to be used when the specimen cannot
be pulled out, as for example when measuring hard magnetic material
between the poles of an electromagnet. To prevent eddy currents appearing
during rapid field variations, the specimen and the yoke must be laminated.
If the specimen is not perfectly in contact with the pole surfaces, the field
in the specimen will not be equal to that in the gap when the specimen
is not present. For example, with an air-gap between the specimen and
the pole-piece equal to 1%, of the thickness of the specimen, the value of
47M being 10,000 gauss, the internal field is 100 oersteds smaller than
the external. The internal field must therefore be measured separately.
This can be done by making use of the continuity at a surface of the
tangential component of the magnetic field. The field directly adjacent to
the specimen is measured with a small coil. In this way, however, one
measures the field at the distance equal to the radius of the coil around the
specimen, which can differ appreciably from the internal field. In this case
it is advantageous to use a magnetic potentiometer; see Fig. 25.2. This is a
semi-circular, uniformly wound coil. The total enclosed flux is then propor-
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tional to [H;d/ along the centre-line of the coil, which, when placed on the
surface of the specimen, is equal to [ H;d/ along its surface between the two
ends of the coil, the field being measured exactly along the edge.

Fig. 25.2. Magnetic potentiometer —1 i é_‘

or Rogowski coil. 7,

In the case of ring-shaped'specimens (principally suitable for soft magnetic
materials) the total induction is also measured. If the field coil is uniformly
wound around the specimen, the internal field is uniform, and the field out-
side the ring is exactly zero; therefore no correction whatsoever need be
applied and the field is found directly from equation (1.1). In the case of
straight rods, where the permeability would be too much restricted by the
demagnetization, the magnetic circuit of the rod is closed with a yoke of
soft magnetic material. If the cross-section of the yoke is large with respect
to that of the specimen, the effect of the permeability of the yoke is
negligible.

With measurements on a closed magnetic circuit, such as for instance a
ferrite ring, only changes in B can be measured. In order to measure magneti-
zation curves it is necessary to start from a known state, which is for instance
obtained if the specimen is demagnetized; this can be done by placing it in
an alternating field the amplitude of which is gradually reduced from a very
high value (sufficient to saturate the specimen) to zero. For measuring hy-
steresis loops the saturated state is taken as the starting point and measure-
ments are continued until the specimen is saturated in the opposite direction.

Hysteresis loops can be recorded on an x-y recorder with the aid of an
integrating circuit [Br 1]. This calls for the use of d.c. amplifiers of high
sensitivity, galvanometers with photoelectric cells being suitable for the
purpose (see Fig. 25.3).

If the magnetization does not reach its final value immediately after the
field is applied (which may be the case, for example, when eddy currents are
present) wrong results may be obtained when measuring the hysteresis loop
if demagnetization occurs [Sn 2]. The internal field H; = H, — NM is
then temporarily too large at certain places, and therefore, as a result of
hysteresis, there will ultimately be too great a change in the magnetization.
A consequence of this can be that the virgin curve (commutation curve)
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falls outside the hysteresis loop (Fig. 25.4). With non-conductive ferromag-
netic rings errors can occur owing to the fact that, because of the presence
of stray capacitances, oscillations appear in the field after interruption of
the current. In measurements of the remanent magnetization, for example,
this can give rise to appreciable opposing fields, which result in an apparently
lower value of the remanence. These oscillations can be adequately damped
by applying a resistor R parallel to the primary winding L; through which

d/
""rd% 2

I,

Fig. 25.3. Basic diagram of an integrator for measuring B-H loops. S search coil; R inte-
grating resistor; Ga galvanometer; L Light source for galvanometer; F gas-filled twin
phototube; N® meter giving a direct reading of the change of flux linked by the search
coil. See [Br 1].

1500
M
(gauss) ——
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| [
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Fig. 25.4. Main loop of a wire of carbonyl iron, as measured by switch-
ing on and off the current in the usual way. The virgin curve measured
by the “step by step’ method, in which the current is increased in small
steps, lies outside the loop. (After [Sn 2]).
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Fig. 25.5. Damping of oscillations by a
resistance R parallel to the primary
coil of a circuit for measuring magneti-
zation ballistically.

I R L

( A
—)

about 109, of the current flows (Fig. 25.5); this makes the L;/R time of
the circuit sufficiently long.

25.2. METHODS UTILIZING THE FORCE ACTING ON A BODY IN A NON-
UNIFORM FIELD

Magnetic moments of paramagnetic salts are generally measured by deter-
mining the force on the specimen in a non-uniform magnetic field, of which
the component in the x direction is equal to:

Fy = MoH/dox = yHdH/ox. (25.1)

The magnetic moment is then generally too small to be measured ballisti-
cally. However, the forces are soon large enough to be measured accurately.
For example where y = 10~4/cm? and H = 1000 Oe and dH/dx = 1000
Oe/cm, the force is 100 dyne per cm3, although M is still only 0.1 gauss. The
force is generally compensated with, say, a spring balance. For ferromag-
netics the forces are very considerable.

A method of measuring magnetization exists [Ral] in which use is
made of the second derivative of the field with respect to position; the first
derivative may then be zero, i.e. the specimen is placed at a position where
the field is maximum in the x direction. For deflections in at least one direct-
ion at right angles thereto the field is then minimum. However, the specimen
is suspended on a pendulum, (Fig. 25.6) so that it can only move in the x
direction. Suppose that the field in the vicinity of the maximum can be
descibed as

H = Hy— lax2. 25.2)

The force f; = aMx acting on the specimen is thus a harmonic force. Hence
the period of oscillation will change according to:

1 aMVv

702 4nm’

(25.3)

l_
=
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where V is the volume of the specimen and m the mass of the pendulum.
In most cases it is the weight of the sample that is determined, so that accor-
ding to (25.3) the magnetization o per gramme is measured. This method is
used only for measuring the moment in high fields. The demagnetizing fields
of the often irregularly shaped specimen are therefore unimportant.

L 3, 2

Fig. 25.6. Pendulum device for measur-
ing the magnetization of a specimen

y in a non-uniform field (after [Ra 1]).
Specimen p, pole pieces N and S,
horizontal pendulum P, cooling vessel
No-w-§ V and nitrogen current Na.

§ 26. Measurements of Magnetocrystalline Anisotropy Energy
26.1. MEASUREMENT OF MAGNETIC ENERGY

The magnetocrystalline anisotropy energy can be measured from the different
trend of the magnetization curves versus the field in the easy and difficult
directions of magnetization in a crystal. The anisotropy is then equal to
the difference in magnetic energy:

Fx = 4 [HAM. (26.1)

It is not possible from this relation alone to determine the different constants
from (11.1) or (11.6). To do this it is first necessary to analyse the form of
the M versus H curve in the difficult direction. For example, we have seen
in § 17 that if we have only K1 # 0 in (11.6) for a hexagonal crystal, the
M versus H curve in the difficult direction is a straight line up to saturation
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at H = HA, If K; is also taken into consideration, for a preferred direction
with the field H in the basal plane the component Mg of M along H satisfies:
2K + 4K M} = M:H. (26.2)
M, BT M ET T '
Thus, if HM;/Mpy is plotted [Su 1] as a function of M3, astraight line
is obtained whose point of intersection with the vertical axis is equal to
2K1/M;, the slope being equal to 4Ka/M>2.

For cubic crystalline anisotropy the M versus H curves are always curved.
The anisotropy constants K1 and K> can then be separately determined from
measurements of M as a function of H in different directions, for example
in the [100], [110] and [111] directions. The area enclosed between the
magnetization versus field curves in the [111] and [100] directions is equal
to K1/3 + K2/27, and that between the [110] and [100] directions is
equal to Ki/4.

26.2, TORQUE METHOD

In the torque method of magnetic anisotropy measurement the specimen is
suspended on a torsion spring in a uniform magnetic field H. If this is
much stronger than the anisotropy field H4 the magnetization vector will
be practically parallel to H. The torque acting on the specimen can then
be found simply by differentiation of the crystal anisotropy with respect
to the angle concerned. For fields comparable to or smaller than H4 the
equilibrium position must first be calculated by, for example in (17.2),
putting dF/d0 equal to zero. The torque is then

T = dF/da = dF/oa + (0F/00)d08/da,

where the last term is zero. For cubic materials and for strong fields we
find in the (110) plane

K K
T(0) = §1 (2'sin 20 + 3sin 46) + Ei (sin 20 + 4 sin 40— 3 5in 66), (26.3)

where 0 is the angle of the magnetization with the [100] direction. By
harmonic analysis of the measured curve the constants K; and Kz can be
determined. For rotation of the magnetization in a (111) plane, only Kz
gives rise to anisotropy owing to the hexagonal symmetry in that plane:

K:
T(6) = Iggsin 66. (26.4)

This method offers advantages and leads to simple results if the applied
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field is much larger than the anisotropy fields. If this is not the case the mag-
netization can only be turned through a small angle out of the preferred
orientation, and what in fact is measured is the stiffness with which the
magnetization is bound to the preferred direction. In this case the stiffness
can more easily be measured by the method described in § 26.3.

26.3. TORSION PENDULUM METHOD

An analogon for the pendulum method of measuring magnetization also
exists for the determination of crystal anisotropy. This consists in determin-
ing the frequency of the torsional vibration of the specimen around the state
of equilibrium in a uniform magnetic field. The stiffness ¢ is then given by
(see Fig. 17.1):

¢ = d2F/da? = d%F/da2 + 2(2F/dadb)d6/da + (22F/062)(d0/da)?  (26.5)

If the moment of inertia of the torsion pendulum is I this magnetic stiffness
changes the square of the reciprocal period of oscillation by an amount:

A1 /72) = c/4n?I. (26.6)

For uniaxial anisotropy described with a constant Kj, equation (26.5)
becomes:

1 1 -1
€= (HMs cos (a— 6) + 2K cos 20) )

In weak fields (H << H4) the relation between ¢-1 and H-1is in first approxi-
mation linear:
1 cos 2a

-1~ , 26.7
¢ _HM8005a+2K1cosza ( )

while for an infinitely strong field the limit value reached is:
€ o = 2Kj cos 2a. (26.8)

At 0 < a < 45° the stiffness passes through a maximum. These values of a
differing from zero can be obtained with a stiff torsion wire. At a = 0 the
relation is linear for all fields:

1 1

1
— = -1 Ay-1 ¢, 26.9
HM3+2K1 MszH + (HY $ (26.9)

c1

The slope of the ¢! versus H-! straight line is equal to 1/Mj; for a # 0
it is generally equal to 1/M; cos a.
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26.4. DETERMINATION OF CRYSTAL ANISOTROPY FROM FERROMAG-
NETIC RESONANCE

With the aid of the general expression (18.10) for the resonance frequency,
an anisotropy energy can be determined by measuring the resonance fre-
quency at different orientations of the static magnetic field with respect to
the crystal axes. An example of this is given for uniaxial anisotropy in § 18.1.
For cubic anisotropy this method has been applied by Bickford [Bi 1],
among others. The method determines not only the crystal energy but also
the g factor. If for the same resonance frequency the field strengths Hi,
Hz and Hj3 have to be applied in the [100], [111] and [ 110] directions res-
pectively, then the resulting effective field strengths are given by:

[110] He“ = Hl + &
M;

[111]: Hegr = 112—i fl— —ﬁ 1(3 (2610)
3I M, 9 M,

(110): Hor =(Ha— Z—KI)’} R )-%
Mg Ms 2M3

From the magnitudes of H,.sr and M; the quantities g, K1 and K2 can be
determined. In the case of uniaxial crystals, in which both K; and K, differ
from zero, the g factor can also be anisotropic. By measuring at only
one frequency the crystal anisotropy cannot then be determined, and meas-
“urements must accordingly be made at more than one frequency.

§ 27. Magnetostriction
27.1. DISPLACEMENT MEASUREMENTS

The magnetostriction of a rod can be measured by the displacement of one
of the ends of the rod with respect to the other. There are various methods
of doing this, which can also be used for displacements of a non-magnetic
nature. First of all there is the purely optical method, in which the displace-
ment is first increased mechanically by for instance a factor of 10 with the
aid of a lever, after which the translation is converted into the rotation of a
thin spindle on which a mirror is mounted. In this way displacements of
the order of 107 cm can be measured. The method has the advantage that
the magnification factor depends only on mechanical quantities, determined
by the construction. In principle the method can also be employed at tem-
peratures differing from room temperature. There are also several electrical
methods that can be used, in which the displacement is converted into a
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change in the capacitance of a condenser or into the change in the mutual
inductance between two coils (differential transformer). In the first case a
circuit can be detuned so as to produce a different frequency. The beat
frequency produced with a signal of the original frequency is then a measure
of the displacement. In most cases a null method is made of this device by
compensating the variation in capacitance with a variable condenser con-
nected in parallel. The disadvantage here is that the measurement cannot
be carried out quickly; quick measurements are usually necessary because
of temperature variations. An increase in temperature of about 0.1° gives
rise to a strain of 10-6. The differential transformer can be made as a
direct-reading instrument. With such small deflections several interfering
effects can arise as for example a magneto-caloric effect when the field is
switched on rapidly. This can produce temporary changes in temperature
of 0.1°C.

27.2. STRAIN MEASUREMENTS

In 1947 Goldman [Go 2] reported how strain gauges, at that time just in-
troduced, could be used for magnetostriction measurements. A folded metal
wire, which can have a resistance of the order of 100 ohms, is affixed to the
specimen. The magnetostrictive strain causes changes in the resistance of
the wire, which can be measured with the help of a Wheatstone bridge. Simi-
lar strain gauges are in the other branches to compensate as far as
possible for temperature influences. The measurement can be carried out
with direct current or low-frequency alternating current (f<< 100 c/s)
since the magnetic material to which the current-carrying wires are affixed
can give rise to an inductive effect which changes during magnetization.
This method is also very sensitive, being capable of measuring strains up
to 10-8, The advantage is that no long rods or rings are needed, an important
point in the measurement of single crystals. The minimum dimensions of
strain gauges are approximately 2 mm. Additional errors that can occur
in this measurement are caused in the first place by the magneto resistance
of the wire. At room temperature this is not greater than 10-7. When more
than one strain gauge is used in a Wheatstone circuit this effect is approxi-
mately eliminated if care is taken to ensure that all the strain gauges are in
the same magnetic field.

Strain gauges are not readily usable at low temperatures. In the first place,
the temperature coefficient of the resistivity p has been made very smalt
at room temperature, (dp/p)/°C = 2.10-5. This is only possible in a small
range of temperatures, and at low temperature this coefficient can be a
factor of 10 larger. A temperature coefficient as low as this is obtained by
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using an alloy with a transition element (e.g. Cu-Ni alloy). Even though
they do not become ferromagnetic at low temperatures, these alloys never-
theless become strongly paramagnetic and exhibit a very considerable change
in resistance (4p/p = 10-3) in a magnetic field. The use of strain gauges at
high temperatures imposes restrictions on the paper and the cement emp-
loyed, so that the upper temperature limit for practical purposes is 50 °C.
To sum up, it can be said that strain gauges provide a good method for
measuring magnetostriction on single crystals at room temperature, it then
being easy to vary the angle between the direction of measurement and the
applied voltage.

27.3. STRESS MEASUREMENT

In order to measure the dynamic magnetostriction in small alternating fields
(small enough to cause no heating) the rod of magnetic material can be
clamped against a piece of piezo-electric material so that the total length
remains constant. If the length of the piezo-electric material is small and the
cross-section large with respect to the same dimensions of the magnetic
specimen, the length of the latter will also remain constant and the magne-
tostrictive stresses of the magnetic specimen can be measured from the
polarization of the piezo-electric material.

§ 28. Methods of Measuring Complex Initial Permeability in Various Fre-
quency Ranges
28.1. INFLUENCE OF DEMAGNETIZATION ON THE APPARENT PERMEA-
BILITY
The relation between the apparent permeability papp of an ellipsoid and the
true permeability p of the material is:

®
Papp = ———— (28.1)

N
1+4—ﬂ_(l4_ 1)

where N is the demagnetizing factor of the ellipsoid in the direction of
the measuring field, see § 1. High-permeability materials are preferably
measured in the shape of ring cores in order to avoid excessively large cor-
rections for demagnetization. The demagnetizing factor of a sample can
be determined from the ideal magnetization curve, which is measured by
superimposing an alternating magnetic field on a constant magnetic field
H in the core. The amplitude of the alternating field is gradually reduced
from a high value to zero. The curve which gives the relation between the
magnetization obtained in this way and the intensity of the constant magnetic
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field is called the ideal magnetization curve. If no demagnetization is pre-
sent, the curve touches in the origin the magnetization axis, (dH/dM)g—o = 0.
Owing to demagnetization the curve will make an angle 8 with the magneti-
zation axis determined by tanf = dH/dM = N, where N is the effective
demagnetizing factor; see (1.11) and Fig. 28.1. Apart from the demagne-
tization caused by the shape of the
y sample, internal demagnetization

P exists which is related to the presence
1 of a second, non-magnetic phase or
pores; see § 43.3. With sintered
ferrites, for instance, the angle B
gives an impression of the magni-
tude of the porosity: the angle incre-
ases with the porosity. In this case
N; =tan B is called the internal
demagnetizing factor. For a ring
Fig. 28.1. Ideal magnetization curves: Wlth.a small air gap, (1.13) gives the
) no demagnetization; ) demagnetizing rclation between the relative length
factor N = tan of the gap and the corresponding

demagnetizing factor.

In § 23.1 a complex susceptibility was introduced which describes the linear
relationship between an alternating magnetic field and the alternating mag-
netization which it produces in a ferromagnetic core. The susceptibility
is complex owing to damping of the ferromagnetic rotator. Irrespective of
the nature of the magnetization process and the nature of the damping,
we write for the complex permeability

p——— )

po=p —in. (28.2)

The real and the imaginary part of the permeability determine respectively
the induction which changes in phase and that which changes 90° out of
phase with the field. The phase angle 8 or the loss factor tan & is given by

tan 6 = u''/p’. (28.3)

The influence of demagnetization on the magnitude of tan 8 can easily be
calculated. The relation between the externally applied field strength H.
and the internal field strength H is:

H=H,— NM. (28.4)
Dividing (28.4) by M gives the general expression:
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11
- N, (28.5)

X Xapp

where yapp is the apparent susceptibility of the magnetic core. If follows
from (28.5) that:

”

x"'app _ X (28.6)
| xapp|? |xI2

Expressed in the permeability this becomes:

tan 8 tan 8
222 — — (28.7)
Il-’app (1 — tan? aapp) —1 l.b’ (1 — tan2 8) —1
or in the case of high permeabilities and small loss angles:
tan & tan 3§
2 ey 27 (28.8)

Happ [

This equation states that if the permeability of a magnetic core is reduced
as a result of an air gap or as a result of internal demagnetization, then the
loss factor is reduced proportionally.

28.2. BRIDGE METHODS AT LOWER FREQUENCIES

With soft magnetic core materials it is important to know the frequency-
dependence of the initial permeability. For lower frequencies, up to about
50 Mc/s, this quantity is generally measured by winding a coil around a core
of the material to be investigated. The properties of such lumped impedances
are determined with the aid of bridge or resonance circuits. In order to
measure the permeability and the dielectric constant of the material from
frequencies of about 50 Mc/s up to the centimetric wave range, methods of
measurement have been developed in which the magnetic core isincorporated
in cavity resonators or transmission lines. From the resultant perturbations
the properties of the ferrites can be determined.

A toroidal ferromagnetic core with permeability u, cross-section 4 and
average diameter D, provided with a winding of N turns, can be treated as
an impedance Z consisting of a self-inductance L, and a resistance R; in
series:

Z =Rs+ ijs
R; = w(N2A4/D)p”’-108 ohm (28.9)
L; = (N24/D)p/-10-8 henry.

With the aid of bridge circuits, such as the Maxwell and Schering bridge
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or a mutual inductance bridge, the two components Rs and Ls of the im-
pedance Z can be measured at low frequencies (below about 50 Mc/s) and
p' and p'’ calculated from the results. Measurements of the quantity p’
alone can be performed with great precision with an Owen bridge. A quick
resonance method, which can be used at frequencies between about 50
kc/s and 5 Mc/s in cases where the loss angle is smaller than approximately
0.1 radian, is described in [Bu 1].

When measuring the permeability of ferrite cores at high frequency, the
high electric resistance of these materials generally precludes the troublesome
skin effect found with metals. However, the cross-section of the ferrite core
to be measured may have to be kept small in order to avoid dimensional
resonance phenomena. The reason is that, owing to the high dielectric con-
stant of some ferrites, it is possible that at the measuring frequency the wave
length in the ferrite will be of the order of magnitude of a linear dimension,
which can give rise to standing-wave phenomena in the core (see § 29.1).

In the bridge measurements the ring core must be provided with a winding,
which sets a limit to the measuring range. At low frequencies and low mag-
netic losses in the core the d.c. resistance of the winding can so predominate
that there can be no question of an accurate measurement of Rs. A method
of eliminating this d.c. resistance is that using the mutual inductance bridge
described under (b). At higher frequencies a correction can be made for
the d.c. resistance, provided it is known at this frequency. To avoid
an increase in resistance owing to skin effect, braided copper wire should
be used at frequencies higher than 100 kc/s, the thickness of the separate
wire strands being adapted to the measuring frequency; up to about 10 Mc/s
the rule of thumb is that the wire thickness in
microns must be smaller than the wavelength in
metres.

Besides the earlier-mentioned self-inductance L
and resistance R;, the complete equivalent circuit
also contains the stray parallel capacitance Cp
shown in Fig. 28.2. Between the terminals P and Q
apparent values Ry’ and L; are thus measured,
which for small values of C, are related to the true
values Rs; and Ls by the equations:

Ry = R;/(1 — 2w2L,Cp)
Fig. 28.2. Equivalent cir- Ly = Lg/(1 — 2L;Cp) (28.10)

cuit of a coil with ferrite tan 8’ = (tan 8)/(1 — w2L:Cp).
core. The stray capaci-
tance is indicated by C,. Consequently the values of ' and p'* derived from
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L' and R’ according to (28.9) will differ all the more from the real values
the larger the value of w2L,Cp. This is particularly the case at higher
frequencies, at which C, and L, must therefore be kept as small as poss-
ible. To make Cp small the ring can be provided with a special low-capacit-
ance winding, in the manner illustrated in Fig. 28.3. The number of sections
can be extended to more than two. -
Moreover, in cases where the ferrite —fCﬁi\\ a
core has a high dielectric constant, the f\\ : /i‘ e
stray capacitance can be reduced by \Eﬂa
Winding the ferrite core beforehand Fig. 28.3. Low-capacitance winding of
with an insulating material of low e. six turns on ferrite core.
The self-inductance Ls cannot be arbit-
rarily small, since otherwise the stray self-inductances of the supply leads
would become relatively important. In that case the core can be wound
with metal strip, but it is even better to use a single coaxial winding, a
kind of box fitting closely around the ferrite ring.

We shall now outline some commonly used methods of measurement
with lumped impedances.

(a) Owen Bridge for Accurately Measuring i’ up to a Frequency of about
20 kcfs

The Owen bridge as in Fig. 28.4 is particularly suitable for the accurate
measurement of self-inductances [Ow 1]. The conditions of balance are:

La; = R1R3C2

28.11) -
2 = R1C2/C3. ( )

Both these conditions can be satisfied by
adjusting Rs and C3 independently of each
other, a facility which makes the bridge most
convenient to work with in practice. The value
of the self-inductance can be very accurately
ascertained if Cp is a well-calibrated cond-
enser. The equivalent resistance R, cannot
properly be measured with this bridge, since
Fig. 284. Basic diagram of = iloeer analysis of the bridge reveals that the
z:z:t::iie ltl"gr tr:e:ﬁg:;i :zlcfy adjustment of Cs is pa.rtly determined 'by the
of about 20 kc/s; see [Ow 1]. magnitude of L, if Ry is not a pure resistance

and the loss factor of Cs is not zero. Convers-
ely, the setting of Rs is not influenced by the magnitude of R,. A difference
measurement, carried out by short-circuiting points 4 and 5 and by inserting
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between them the unknown self-inductance, shows that there are two set-
tings of Rz from which L, immediately follows.

(b) Hartshorn bridge for frequencies from about 30 to 2000 c/s

The principle of the bridge is that the voltages induced in the secondary
windings (see Fig. 28.5) by the mutual inductances Mz (with ferromagnetic
core) and M, (with air core) cancel
each other out. The mutual induct-
ance My is variable, and if its mag-
nitude in the compensated state is
M, the permeability of the ferrite
ring is given by:

MD
T 0.4 NiN2A *

where D is the average diameter of
the ring and 4 its cross-section, and
N1 and N3 are the numbers of prim-
ary and secondary turns around the
ring respectively. The secondary
voltages in Mr and My can never
entirely compensate each other, since
Fig. 28.5. Principle of Hartshorn bridge. ~ magnetic losses in the ferrite core

cause a phase shift. In order to
compensate the resultant voltage component, which is 90° out of phase
with the secondary voltage of My, another voltage is introduced into the
secondary circuit which is proportional to the current / in the primary
circuit. The resistances r1 and r2 and R in Fig. 28.5 can be replaced by an
equivalent resistance  (see [Kl 1]) according to:

7 108, (28.12)

r = rire/(r1 + r2 + R).

By making R large with respect to r1 and rz, the value of r can be made small
quite simply; hence the voltage Ir, used as compensation voltage in the sec-
ondary circuit, can also be arbitrarily small. The loss angle of the ferrite
core is then given by

tan & = r/wM, (28.13)

where w is the angular frequency at which the measurement is performed.
The advantage of this method is that the d.c. resistance of the winding around
the ferrite core plays no part.



§28] METHODS OF MEASURING COMPLEX INITIAL PERMEABILITY 127

Example: f= 100c/s N1 = 13, No =57, D =24 cmand 4 = 0.16 cm2.
M =16.5 pH and r = 0.000,9 ohm
p’ =91 and tan 8 = 0.09.

(c) Maxwell Bridge for Frequencies up to about 100 kc/s and Modified Schering
Bridge up to about 60 Mc/s
The conditions of balance of the Maxwell bridge shown in Fig. 28.6 are:

Ly = RiR:C

28.13
Rz = RiRz/Rq. (28.13)

Resistances R; and Rz with very small time
constants have been described by Kohler
and Koops [Ko 3]. All the connections and
switches of the bridge should have a very
low resistance and reactance. Moreover,
all parts must be well screened. A cons-
truction with Wagner earth is repres-
ented in [Ko4]. Self-inductances of 200 pH
and a loss factor tané of about 0.22 can
be measured by this bridge with an accur- ]
acy of 0.19 in the range from 0.5 to Fig. 28.6. Principle of Maxwell
100 kc/s. bridge with Wagner earth.
For higher frequencies a modified Scher-

ing bridge has been developed by Sinclair (Radio-Frequency Bridge Type
916-A, General Radio Company), by means of which reactances can
be measured in the frequency range between 300 kc/s and 60 Mc/s, [Si 1].

28.3. WAVE METHODS AT HIGHER FREQUENCIES

(a) Coaxial Resonator from 10 Mc(s to 2000 Mc/s

At higher frequencies the accurate measurement of the properties of lump-
ed impedances is almost impossible owing to the self-inductance and stray
capacitances of the leads. One of the commonly used devices for measure-
ments at these frequencies is a quarter-wavelength resonator. A coaxial
line of a certain length / (see Fig. 28.7) is magnetically coupled via a small
loop to an oscillator. The voltage appearing at the top of the resonator is
measured with a crystal detector D mounted near the top of the inner con-
ductor. The couplings between the coaxial resonator and the oscillator and
between the detector and the resonator must be so weak as to make the
amplitude and the frequency of the oscillator independent of the tuning
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of the resonator and also to preve

nt the detector from influencing the

resonator. The principle of the measuring method is that a ferrite ring F is
inserted in the coaxial line at a position where the magnetic field strength

1))
T
L |-
A
’=T
A
C DE 3
| faf e T ]
—@ 4

Fig. 28.7. Coaxial line (/ = A/4) for
measuring p’ and u’’ at high frequencies.
O oscillator, D detector coupled to
the electric field, F ferrite ring (accord-
ing to [Bu 1}).

has a maximum and where the
electric field strength is approximat-
ely zero. For small disturbances of
the line the displacement of the
resonance frequency is proportional
to p’'— 1 of the ferrite. Also the
width of the resonance line of the
loaded cavity is broadend due to
the losses in the ferrite. This line
broadening is proportional to p' of
the ferrite. Inpractice the resonance
| frequency is kept constant, while
Z the length of the line is varied (see
Fig. 28.8). In principle we now have
all the information which, together
with a knowledge of the dimensions
of the ring and the line, is required
for calculating the complex perme-
ability. The equations are greatly
simplified if the displacement of the
resonance frequency is also determ-
ined for the case where a copper ring
of the same dimensions [Li 1] is

Aly

Al

/

Fig. 28.8. The changes &/
and 8/; in the length Jy of
a tuned coaxial quarter-
wave line as a result of in-

F s o s

troducing a ferrite or copper
ring respectively. The fre-

quency is kept constant.
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inserted in the line. The field inside the copper is zero, so that the ring can
be described as having p = 0, which can be used for calibration. If the quality
of the line with ferrite ring is high enough (>10) and if the relative detuning
8lr/lp is small with respect to 1, we may write:

p — 1= —8lp/8lc
and p” =~ (Alp — Aly)[28lc

For the definitions of the symbols see Fig. 28.8. The measurements can also
be carried out by varying the frequency and keeping o constant. The line
can be terminated by a variable capacitance, so that the frequency range is
extended to lower values; see [Bu 1]. Since the ferrite ring fills only a very
small part of the line it is possible to measure ferrites with large loss angles,
the quality factor of the line remaining higher than about 10. To avoid the
presence of an electric field in the ring, the axial dimension of the ring
must be small. At very high frequencies care must be taken that the radius
of the outer conductor remains smaller than 1/3 of the wavelength, since
otherwise a wave guide mode can appear in the coaxial line in addition to
the principal mode, which would give rise to radiation losses and make
accurate measurement impossible.

(28.14)

(b) Standing Wave Method

A method of simultaneously measuring the complex dielectric constant and
magnetic permeability at centimetric waves has been developed by Roberts
and Von Hippel [Ro 2]. A coaxial line is terminated, as in Fig. 28.9, by
a ferrite ring. The ring must fit closely into the coaxial tube. The line is
first short-circuited immediately behind the ferrite ring (situation I), and

o Agfhre— 11—
o ; x
T :
OO —m—
di—Agff~
E; T

-

X2
Fig. 28.9. A coaxial line terminated at one end by a ferrite ring. The
waveform of the voltage in the line is given for situation I, in which the
line is short-circuited by a plunger immediately behind the ferrite ring,
and for situation II, in which the plunger is at a distance of A/4 behind
the ferrite.
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afterwards at a quarter-wave distance from the specimen (situation II). What
is now measured for situation I as well as for situation II is the distance
from the first voltage minimum to the ferrite ring, x; and x; respectively,
together with the voltage standing-wave ratios, £, and E» respectively.
(That is to say the ratio between the voltage in the minimum and that in
the maximum.) The impedances Z; and Z: in both cases can be computed as:

Zy/L = (Ej — i tan 2mu5/Ao) /(1 — iEj tan 2mas/A), j = 1,2

where { is the characteristic impedance of the line, which depends on the
ratio of the diameters Dz/D1, and A is the wavelength; see [SI 1]. From the
complex impedances Z; we can calculate € and p with the help of the rela-
tions:
tan 2nd/Ao)} pe = YZ1/Z;
Vule = (/)Y Z1 2>,

where d represents the height of the ring. For maximum accuracy the
height of the ring should fulfil the condition d =~ X/8)ep, provided the
losses are small; where the losses are larger the ring must be thinner. Con-
siderable errors can be made if the ring does not fit tightly into the coaxial
line.

(28.15)

(¢) Cavity Resonator

At wavelengths smaller than about 30cm the permeability of a ferrite can be
measured on small rods in a cavity resonator, as shown in Fig. 28.10. With
this method, as with the quarter-wave resonator, the detuning and the change
in quality caused by the ferrite rod are measured. The specimen should be
sufficiently thin to ensure that the electric field in the rod will be small.
The theory of electromagnetic waves in resonant cavities is given in [Ca 1].

The permeability of ferrite spheres can also be measured with resonant

2
i 7 \
1N N \‘
. Hie | o' |
Fig. 28.10. The TE 011 cavity ; 0 \| |
resonator for measuring the per- l| te Ul el

o . . P 7 |

meability of ferrite rods at centi- v/ % /I
2 !

metre waves. The ferrite rod is ! // 7 J
. . —rt i
mounted axially. The electric (O, ®) A t z
and magnetic (broken curves) lines I‘_z.R_ﬂ
i

of force are indicated.
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cavities, although at large permeabilities this is difficult owing to demag-
netization. In the case of a sphere the apparent permeability papp is related
to the true permeability of the material according to (28.1) as papp —1 =
2(p— 1)/(p + 2). However, with small spheres ferromagnetic resonance
experiments can readily be carried out in a cavity in the presence of an
external magnetic field (see [Be 1]). Such experiments also provide infor-
mation on line widths (hence on the damping in the ferrite) and on g factors.
(see § 20). At resonance the resonant cavity is detuned and, above all,
damped.

The properties of the material, provided the sphere is small enough, can
be derived from the complex detuning, which according to perturbation
theory is given by:

Swjew — (HoM - EoP)[4W (28.16)

where Ho and E, are the field strengths at the position of the sphere in
the empty cavity, W the energy content of the empty cavity and M and P
the magnetic and electric dipole moments respectively of the sphere. For
constant p and e these are therefore proportional to M and P, although the
demagnetizing and depolarizing effects must be taken into account. For
example, with a small sphere of radius R, we may write:

e— 1

3 R3E,. (28.17)

—1
M="""_" RsHyand P —
p+2 e+

For the general susceptibility tensor (28.16) becomes
dwlw = [xzalhal® + xaoyha*hy + xyshyha® + xyylhy21/AW, (28.18)

where V is the volume of the specimen. The condition for the validity
of these formulas is that Hy and E, should be uniform over the sphere,
as well as the H and E thereby generated. This is the case if the wave-
length employed inside the specimen is large with respect to the dimen-
sions. It is precisely at resonance that this condition is not always satis-
fied. From (23.9) it then follows th at x” is of the order of M,/4H,
hence for ferrites with Ms; = 300 gauss, p”’ is of the order of 100 when
AH = 50 gauss. Furthermore, « is of the order of 10, so that the wave
length in the material can be roughly 30 times smaller than in vacuo. For
XA = 3 cm, then, the diameter of the sphere must not be much larger than
a few tenths of a millimetre and even less for shorter wave lengths ([Be 2]
and [Ya 2]). This requirement of smaliness need not be satisfied if the
material has the form of a disc and is fixed against a wall. In that case the
requirement need only be fulfilled by the thickness of the plate, which can



132 METHODS OF MEASURING FERROMAGNETIC PROPERTIES [CH. VII

easily be made small by grinding. A further requirement is that the sphere
should not be placed too close to the wall, in view of the image effect. With
the platelet in question it is also necessary to take into account the fields
produced in the wall by the precessing magnetization. The magnetic lines
of force of the high-frequency field must remain parallel to the conductive
wall. Polder [Po 2] has pointed out that this can be taken into account by
including the mirror image of the ferrite platelet in the considerations. The
demagnetizing coefficients in the resonance condition (18.12) are then slightly
altered. The static demagnetizing field in the x direction does not change,
and is put equal to NM. The demagnetizing fields NyM and N.M, which
increase the resonance frequency, are now no longer determined by the small
demagnetizing factor N of the round platelet, but by the demagnitizing
factor of the platelet plus its mirror image; for the alternating magnetizing
parallel and perpendicular to the wall they are 2N and 4~ respectively.
When the applied static field H lies in the plane of the disc, the resonance
frequency is given by:

wr = yV [H + (dm— N)M][H + NM]. (28.18)

§ 29. Loss Phenomena Related to the Dimensions of the Specimen
29.1. SKIN EFFECTS AND DIMENSIONAL RESONANCES

The propagation of an alternating magnetic field in a conducting dielectric
is governed by Maxwell’s equations:

curl H = 0.4woE + iw(e' — i’)E[300c

CUrI E =3 -—iw(”,’ — ilL")H.IO—S (29.1)

In the following we replace €'’ + 120nco/w by €'’, and we obtain for the
wave equation:
2AH = —w?e||ple~ %+ H, (29.2)

where |e] and |u| are the absolute values of the total dielectric constant and
the permeability, respectively. Further 8. is the total electric loss angle and
dm the magnetic loss angle. When a plane electromagnetic wave (propagat-
ing in the positive x direction), with magnetic field Hy falls normally upon
the plane surface of an isotropic medium, we have the solution:

Hy — Hyo e—-x/d—Z‘n'ix//\’ (29.3)
giving for the skin depth d:
1/d = (w/c)(lel|u)} sin $(8; + 8m), . (9
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and for the wavelength A within the material:
2m/A = (w/c)(lel*| )t cos (3 + Sm). (29.5)
The conditions for magnetic metals with negligible magnetic losses are

le| = 120nzco/w; 8.~ /2 and 8,, = 0, so that
2n/A = 1/d = (0.27pwao)t . 104

Brockman et al. [Br 1] discovered that under certain conditions the
apparent permeability and dielectric constant of ferrites can be strongly
frequency-dependent. In these cases the wavelength of the electromagnetic
waves inside the material, see (29.5), is about twice the minimum dimension
of the core in which wave propagation takes place, so that these dimensional
resonances are already found at relatively low frequencies in ferrites showing
at the same time a high value of e and of g. Fig. 29.1 represents relative values
of the real part of € and p as measured by Brockman et al for samples of
manganese zinc ferrites with different dimensions. The dispersions found
for ¢ and p’ depend on the dimensions of the specimen, and are completely
absent for the very thin specimen. The frequency-dependence of u’ found
in a laminated core is caused by the ferromagnetic resonance phenomenon
to be discussed in § 50.1. A static magnetic field shifts the dimensional re-

(29.6)
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Fig. 29.1. Dependence of the real part of the effective material constants upon the dimen-
sions of the specimen (experimental). Specimen cross-sections drawn to scale for each
curve. Data given as the ratio of the effective constant to the real part of the corresponding
constant at 1000 cycles. (4) Permeabilities. (B) Dielectric constant (according to [Br 2]).
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sonance phenomena. to higher frequencies [Mo 1] as a consequence of the
resulting decrease in permeability. This provides a means of measuring
at high frequencies the dielectric constant of ferrites having a high initial
permeability, without any interference from dimensional effects.

29.2. EDDY-CURRENT LOSSES

Where the skin depth d is very large compared with the thickness of the
sample, the influence of eddy currents on the magnetic field is entirely
negligible, and the losses due to eddy currents can be calculated easily.
The amplitude of the electric field strength E, at a distance x from the
axis of a cylinder (see Fig. 29.2) in which a magnetic induction varies
sinusoidally in time with an amplitude Buax is given by:

Ez = mfx Bmax - 10-8 volt/cm. 29.7)

‘ /
‘AN H
A /
Fig. 29.2. Rectangular cross-section g /,/

through a cylinder with radius R.
Eddy current I in the hollow cylinder
with radius x, thickness dx and length
1 cm.

When the magnetic material has a resistivity p, the energy dissipation in a
cylinder with radius R is:

W = (n2f2B2axR2/4p) - 1018 watt/cm3,
corresponding to a loss factor tan §,:
tan 8, = (w2fuR?/p) - 109,

Analogous expressions for plates and spheres are given in Table 29.I.
To give some idea of the order of magnitude of the eddy-current loss
factor, a survey for some materials is given in Table 29.II.

It appears of that the amount of eddy-current losses derived from loss
measurements of ferromagnetic materials is always larger than is calcu-
lated from the resistivity. This discrepancy (eddy-current anomaly) can
be ascribed to the inhomogeneity of the flux changes, due to Weiss-domain
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TABLE 29.1

EDDY-CURRENT LOSSES W AND EDDY-CURRENT LOSS FACTOR TAN &8 FOR SOME SIMPLE
BODIES (Bmax EXPRESSED IN GAUSS, R IN CM, AND ¢ IN OHM CM)

w
Body 10-16 watt/cm3 tan 3 R
plate (2n2/3) f2B2,.« R%/p (872/3)(fRu?/p) - 1079 thickness 2R
cylinder (n2/4f2B2 .. R2%/p 72(fuR2/p) - 1079 radius
sphere (72/5)f2B2,. R%[p (472/5) (fuR%/p) - 10~9 radius

TABLE 29.11

EDDY-CURRENT LOSS FACTORS FOR SOME MAGNETIC CORES IN THE SHAPE OF PLATES AT
A FREQUENCY f.

. P f .

Material o ohm cm Kke/s Thickness tan 3,
Permalloy 7000 2-10-5 5 10 micron 10-2
Mng.4gZno.sgFer.0404| 1000 102 100 2c¢m 10-2
NiFe204 10 106 100,000 2 cm 10-5

structure (magnetization by wall displacements) and the polycrystalline
state of the sample [St 1, Wi 2]. Suppose that in the cylindrical rod the
Weiss domains or grains are very small as compared with the outer dimensions
of the sample. For the magnetically homogeneous material a varying axial
magnetic field will produce the tangential electric field E according to
(29.7), which has at any instant of time a constant magnitude along a con-
centric circle perpendicular to the axis of the rod. In the real material the
contour integral [E;d/ along this circle is the same as in the homogeneous
material, but E fluctuates both in magnitude and in orientation. Consequent-
ly the energy dissipation W, obeying

W = (1/p) [E*dV = (1/p) [dS [E2dI,

is greater than in the homogeneous case. Here dS is a surface element
perpendicular to the concentric circle going through it. For a special con-
figuration this anomaly was calculated by Williams et al. [Wi 2], and
amounted to a factor of about 3.



CHAPTER VIII

INTRINSIC PROPERTIES OF FERRITES
WITH SPINEL STRUCTURE

§ 30 Chemical Composition

The general chemical formula of ferrites possessing the structure of the
mineral spinel, MgAl»0,4, is MeFesO,4, where Me represents a divalent
metal ion with an ionic radius approximately between 0.6 and 1A. In the
case of simple ferrites, Me is one of the divalent ions of the transition
elements Mn, Fe, Co, Ni, Cu and Zn, or Mg and Cd. A combination of
these jons is also possible; we then speak of a solid solution of two ferrites,
of mixed crystals or, in general terms, of a mixed ferrite. Furthermore, the
symbol Me can represent a combination of ions which have an average
valency of two; for example LiT and FelIl in lithium ferrite, Lip.sFea.504.
A particular case is the ferrimagnetic yFe2Os, which has the spinel structure
and whose chemical formula can be written formally as []1/3Feg/304,
the symbol [ representing a vacant lattice site ([Ve 1], [Ha 1]). In
this case Me represents the combination of vacancies and trivalent iron
ions in the ratio 1 : 2.

The trivalent iron ions (ferric ions) in MeFe204 can completely or partly
be replaced by another trivalent ion such as AII or Cr™, giving rise to
mixed crystals with aluminates and chromites. These compounds are also
ferrimagnetic at room temperature if the non-magnetic ions are present in
not too large concentrations. If the ferric ions are partly replaced by one
of the tetravalent ions TilV or GelV, the valency of an equal part of the ferric
ions is lowered by one. A great variety in the chemical composition of
ferirmagnetic oxides with spinel structure is possible [Go 3].

Gorter [Go 4] has pointed out that solid solutions of spinels can occur
with compounds which either do not exist themselves or possess a different
crystal structure: for example (Nao.sFe2.504) does not exist, but can give
a solid solution with Lio.sFea.504; up to 40 9 of the lithium ions in the latter
compound can be replaced by sodium ions. The ferrite CaFezO4 has an
orthorhombic structure [De 1], but in ZnFezO4 at high temperatures up
to 357, of the zinc ions can be replaced by calcium ions without altering
the structure.

Certain ferrimagnetic spinels are known, where the oxygen is replaced
by sulphur [Lo 1]. The Curie temperatures are usually low and we shall
not discuss these substances further.
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The valency of the metal ions in ferrites can be determined by an analysis
of the oxygen concentration. A difficulty is that one is never certain that
different ions will not occur in more than one valency state. In the case of
MnFez04, for example, an oxygen analysis does not reveal whether the for-
mula is MnlTFe 104 or MnIUFelFeIQ,. The ferrite Cug.5Fes.504
constitutes an unsolved problem, since it is not known with certainty whether
in this substance all iron ions are trivalent and the copper ion monovalent,
or whether it is a mixed crystal of CullFe;O4 and FellFez;O4 ([Ko 5] and
[Be 3]). For a discussion of this substance see [Go 5]. In many cases a
magnetic property, in this case the saturation magnetization (§ 33), can
decide between the possible chemical formulas. If it appears from oxygen
analysis that the sum of the valencies of the metal ions per formula unit is
greater than eight, this points to unoccupied metal ion sites, which means
that the ferrite is a mixed crystal with yFe2Os.

§ 31. Crystal Structure
31.1. ELEMENTARY CELL OF THE SPINEL LATTICE

The spinel structure takes its name from the mineral MgAl2O4, which crys-
tallizes in the cubic system. This crystal structure was first determined by
Bragg [Br 3] and by Nishikawa [Ni 1]. The smallest cell of the spinel
lattice that has cubic symmetry contains eight “molecules” of MeFezOj4.
The relatively large oxygen ions form an f.c.c. lattice. In this cubic close-
packed structure two kinds of interstitial sites occur, the tetrahedral and the
octahedral sites which are surrounded by 4 and 6 oxygen ions respectively.
In the above-mentioned cubic unit cell, 64 tetrahedral sites and 32 octahedral
sites are present, of which only 8 and 16 respectively are occupied by metal
ions (called A and B sites respectively). To describe the structure one
can best subdivide this elementary cube with edge a into eight octants with
edge a, as shown in Fig. 31.1. The anions (oxygen ions) are positioned in

Fig. 31.1. The cube represents symbolically the elementary
cell of the spinel lattice. The four shaded and the four
non-shaded octants are occupied by the metal ions in
the same way as indicated in Fig. 31.2.
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the same way in all octants. Each octant contains four anions, which form
the corners of a tetrahedron as shown in Fig. 31.2. The edge of the f.c.c.
oxygen lattice is 4a. As regards the positions of the cations, the octants in
the elementary cube that have only one edge in common are identical
(see Fig. 31.1). In Fig. 31.2 the positions of the ions are indicated in two
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Fig. 31.2. Two octants of the spinel structure. The large
spheres represent the oxygen ions. The small black and white
spheres represent the metal ions on tetrahedral and octa-
hedral sites, respectively.

adjacent octants. The occupied tetrahedral sites of one of the octants are
thus in the centre and on four of the eight corners of the octant. In the ad-
jacent octant the central site is not occupied by a metal jon but, owing to
translation symmetry, half of the corner sites are again occupied. It can be
seen that the occupied tetrahedral sites (4 sites) form two interpenetrating
f.c.c. lattices having an edge a, which are displaced with respect to each
other over a distance 3@ }/3 in the direction of the body diagonal of a cube.
The occupied octahedral sites (B sites) are found only in the other type
of octant. The four metal ions are situated at sites analogous to those of the
oxygen ions, i.e. on one quarter length of the diagonal from the other ends
of the four body diagonals of the octant. Consequently the oxygen and
(octahedral) metal ions in this octant together span a cube with edge }a.
All octahedral ions together lie on four interpenetrating f.c.c. lattices with
edge a, which are displaced with respect to each other over a distance
1a)2 in the directions of the face diagonals of the cube.

The surrounding of a tetrahedral ion by the other ions has strictly cubic
symmetry. This is not the case for an individual octahedral ion. The octa-
hedral ions, of course, are cubically surrounded as far as concerns the oxygen
ions in the ideal lattice, but not as regards their environment by the neigh-
bouring metal ions. Fig. 31.3 shows the environment of B ions by other
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B ions. The two cubes shown do not lie each

in one octant of Figs. 31.1 or 31.2: four B

ions lie in one particular octant, the three other

Bions belong to three different octants. It can

be seen from this that the symmetry of the (7]

environment of an octahedral site by nearest Y

metal neighbours is lower than cubic, and that

only one of the [111] directions is an axis

of symmetry. However, in the whole lattice

cell all [1 ?1] directions occur equally as sym- bours of  cation on an octahe-

metry axis, so that the overall symmetry .. (p) site in the spinel struc-

nevertheless remains cubic. ture. Large spheres are oxygen
While Fig. 31.3 indicates the surrounding ions, small spheres are metal

of an octahedral ion, Fig. 31.4 gives the en- ions on octahedral (B) sites.

vironment of an oxygen ion by its nearest

(metal) neighbours. These are one A ion and three B ions. This unit can be

regarded as the basic component of the spinel lattice. Each 4 ion belongs

to four of such units and each B jon to six. The direction O—A is one of

the body diagonals of the cube, and the directions O—B are along the

cube edges. ’

Fig. 31.3. The nearest neigh-

31.2. THE OXYGEN PARAMETER ¥

The statement in § 31.1 that the oxygen ions form an f.c.c. structure istrue
only in first approximation. In reality slight deviations are found owing to
a deformation caused by the metal ions. The tetrahedral sites, which are
smaller than the octahedral ones, are in ferrites and many other oxidic
spinels too small to contain a metal ion, if we regard the metal ions as well
as the oxygen ions as solid spheres. A consequence is that all tetrahedral
sites are expanded by an equal displacement of the four oxygen ions outwards

Fig. 31.4, The nearest neigh-
bours of an oxygen ion in the
spinel structure. Small open
spheres denote metal ions on
octahedral (B) sites. The black
sphere denotes a metal ion on a
tetrahedral (4) site. The arrow
indicates the direction in which
the oxygen ion is moved in the
case where u > 3/8.
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~along the body diagonals of the cube (see Fig. 31.2). These four oxygen
ions thus still occupy the corners of an enlarged tetrahedron, so that the
surrounding of each 4 ion retains cubic symmetry. However, the four oxygen
ions of the “octahedral octants™ in Fig. 31.2 are shifted in such a way that
this oxygen tetrahedron shrinks by the same amount as the first expands.
This is also the case as regards the oxygen ions indicated in Fig. 31.3. It
can be seen that, as a result, the oxygen surrounding of each B ion no longer
has cubic symmetry, but a symmetry similar to that of the neighbouring
B ions. In Fig. 31.4 the oxygen ions move along the arrow. A quantitative
measure of the displacement is the oxygen parameter u, given by the dis-
tance shown in Fig. 31.2 between an oxygen ion and a face of the cube,
which is put equal to au. The ideal f.c.c. parameters correspond to:

Uia = %.

In the above-mentioned case therefore u > ujq. Table 31.11I gives some values
of the parameter « found with the aid of X-ray or neutron diffraction. Where-
as the displacements of the oxygen ions discussed above make the tetrahedral
sites larger, the octahedral sites are reduced in size so that the sizes of the two
interstitial sites become more equal. A simple calculation shows that for
small displacements the radii of the spheres in both types of interstitial sites
are given by:

ra = Bay3 Ry @GL1)

rg =( § — u)a— Ro,

where Ry is the radius of the oxygen ion.

31.3. DISTRIBUTION OF THE METAL IONS OVER OCTAHEDRAL AND
TETRAHEDRAL SITES

We have seen that in the elementary cell of the spinel structure eight tetra-
hedral and sixteen octahedral sites are occupied by metal ions. Now the
question may be asked, how are the divalent and trivalent metal ions dis-
tributed over the interstitial sites present? Initially this was thought to be no
problem. It was believed that the eight divalent ions were in the eight avail-
able tetrahedral sites and the sixteen trivalent ions in the sixteen octahedral
sites. In many cases this is in fact so, as for example in the mineral spinel,
MgAlzO4, which is therefore known as a normal spinel. Barth and Posnjak
[Ba 1] have shown, however, that this simple assumption is by no means
correct in all cases. By X-ray diffraction studies of a number of spinels in
which the two kinds of metal ions show a sufficiently large difference in
scattering power, they were able to demonstrate that spinels also occur with
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the eight divalent ions in eight of the sixteen available octahedral sites, and
with the sixteen trivalent ions uniformly distributed over the remaining sites.
The eight divalent and the eight trivalent ions are in this case distributed at
random over the sixteen octahedral sites (for exceptions see § 31.4). Spinels
having an jonic distribution of this nature are called inverse spinels.

Experimentally there are three different ways of acquiring information
on the distribution of the ions over the available sites in magnetic compounds,
namely, with the aid of X-ray diffraction, neutron diffraction and from the
magnitude of the saturation magnetization at the absolute zero of tempera-
ture. The scattering cross-section of atoms for X-rays is determined by the
number of electrons in the atom. For this reason there is only a slight diffe-
rence in the scattering power of the atoms of transition elements, and there-
fore the distribution of these ions amongst the spinel lattice cannot usually
be ascertained in this way. The scattering power for thermal neutrons is
partly determined by the magnetic moment of the nucleus of the atom, due to
interaction with the neutron spin. This often varies considerably for atoms
having roughly the same number of electrons, so that neutron diffraction
is able to provide information on the occupation of the two spinel sites by
ions of the transition elements. It can also provide information on the value
of the oxygen parameter and on the magnitude and orientation of the mag-
netic moments of the ions. From X-ray examinations it has been found
[Ba 1] that aluminates and chromites with spinel structure are normal. In
the case of ferrites the X-ray scattering power is often not sufficiently
different for the various ions to provide any information on the ion
distribution. Indirect derivations from lattice constants led to the conclusion
[Ve 2] that zinc and cadmium ferrite are normal and the other ferrites in-
verse. Neutron diffraction experiments have largely confirmed this conclu-
sion. Shull et al. [Sh 1] found that FesOys is an inverse spinel. Hastings and
Corliss [Ha 2] found that NiFezOy is certainly inverse and ZnFe2O4 normal.
It is interesting that the X-ray diagrams of both these substances are identical,
since Nill, FeIl and Zn!! have practically the same X-ray scattering proper-
ties. The scattering of neutrons on magnetic Nill is quite different from that
on non-magnetic Zn!, Copper ferrite is completely inverse [Pr 1]. For a
treatment of the theory of neutron scattering by ferromagnetic media the
reader is referred to Bacon [Ba 2]. The relation between cation distribution
and saturation magnetization is dealt with in § 32.1.

A completely normal or completely inverse spinel represent extreme cases.
The general cation distribution can be indicated as

11 11T II il
Mell Fell , [Me}'_, Fel} ;] Oa,
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where the ions on tetrahedral sites are given in front of the square brackets
and the octahedral ions between the brackets. For a completely random
distribution, 8 = 1/, for a normal spinel 8 = 1 and for an inverse spinel
8 = 0. The quantity & is a measure of the inversion. In the case of some
ferrites 8 depends upon the method of preparation. If these ferrites are
quenched from a high temperature 8 has a value of about one third. A dif-
fusion mechanism an energetically more favourable state causes to occur
at lower temperatures. Depending on whether the diffusion rate is great
enough compared to the cooling rate, an ion distribution will be retained
at room temperature which is the equilibrium distribution at a temperature
that varies from about 150 °C to a much higher temperature. For samples
of MgFe,04 and CuFe204 quenched from various temperatures, the inver-
sion has been determined by X-ray diffraction [Be 4] and by magnetic mea-
surements, [Ne 6] and [Pa 1]. It was found that the results satisfy the
Boltzmann distribution law:

51+

= e BIkT, (31.2)
(1—9)3

where the value of E is approximately equal to 0.14 eV. Neutron diffrac-
tion examinations of MgFe2O4 have yielded a value of § approximately
equal to 0.1 ([Ba 3] and [Co 1]). For MnFe204 an ion distribution has
been found [ Ha 3] corresponding to the formula Mng.sFeg.2 [Mng.2Fe1.5]04.

The following are some of the factors which can influence the distribution
of the metal ions over the 4 and B sites:

(a) The Ionic Radius

Since the tetrahedral site is the smaller, one might expect that the smaller
ions will prefer to occupy the tetrahedral sites. Trivalent ions are usually
smaller than divalent ions (see Table 31.1I) and this tends to favour the inverse
structure,

(b) The Electronic Configuration

Certain ions have a special preference for a certain environment. For exam-
ple, Zn'' and Cd™ show a marked preference for tetrahedral sites where
their 4s,p or 5s,p electrons respectively can form a covalent bond with the
six 2p electrons of the oxygen ion. This produces four bonds oriented to-
wards the corners of a tetrahedron. The marked preference of the ions
Ni™T and Cr™™ for an octahedral environment can be explained as being due
to the favourable fit of the charge distribution of these ions in the crystal
field at an octahedral site ([Sa 1], [Ro 2], [Du 2,3)).
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TABLE 31.1

SOME OF THE METAL IONS OCCURRING IN FERROMAGNETIC SPINELS, WITH THEIR GOLD-
SCHMIDT RADIUS r IN A UNITS

Ton valency

1 1I 11 v
Ion r Ion r Ion r Ion r
Li 1078 Mg 0.78 Al 0.57 Ti 0.69
Na 0.98 Sc 0.83
Ag 1.13 Cr 0.64
Mn 0.91 Mn 0.70 Mn 0.52
Fe 0.83 Fe 0.67 Ge 0.44
Co 0.82
Ni 0.78
Cu 0.70
Zn 0.82
Cd 1.03

(c) The Electrostatic Energy

Another factor that can determine the distribution of the metal ions over the
available interstitial sites is the electrostatic energy of the spinel lattice
(denoted as “Madelung energy””). This is the electrostatic energy gained when
the ions, at first thought to be infinitely far apart, are brought together to
form the spinel lattice. In the normal arrangement the metal ions with the
smallest positive charge are surrounded by 4 oxygen ions, and the metal ions
with higher positive charge by 6 oxygen ions, which is electrostatically most
favourable. With an oxygen parameter larger than the ideal value, this state
will be energetically even more favourable. From calculations for the com-
plete lattice made by Verwey ez al. [Ve 2]and [Bo 1], it follows that for the
spinels consisting of divalent and trivalent metal ions the inverse structure
has the lowest lattice energy in the case that u < 0.379, whereas the normal
structure has the lowest lattice energy when u > 0.379.

TABLE 31.11

CALCULATED RADII OF THE TETRAHEDRAL AND OCTAHEDRAL SITES, r¢etr AND roct RESPEC-
TIVELY, FOR SOME FERRITES WITH SPINEL STRUCTURE, THE RADIUS OF THE OXYGEN IONS
BEING ASSUMED TO BE 1.32 A. THE GOLDSCHMIDT RADII raze OF THE DIVALENT METAL IONS
HAVE BEEN ADDED FOR COMPARISON.

Tetrahedral site Octahedral site
Ttetr me Toct T'Me
MnFe04 0.67 0.91; 0.67 0.72 0.67; 091
ZnFe204 0.65 0.82 0.70 0.67
FeFeg04 0.55 0.67 0.75 0.83; 0.67
MgFez04 0.58 0.67; 0.78 0.72 0.78; 0.67
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Table 31.1I gives the radii of the tetrahedral and octahedral sites (calculat-
ed with the aid of (31.1)) for those ferrites in Table 31.III whose u parameter
is fairly accurately known. These are the normal ferrites MnFe204 and
ZnFe304, and those with inverse structure FesO4 and MgFe2O4. Apart
from a large u parameter (0.385) the first two have a large lattice constant a.
It can be seen from Table 31.II that this large value of a is practically only
used for the purpose of increasing rtetr. This appears most clearly in the case
of MnFe;04, owing to the large Mn!! jon which still partly occupies the
Bsites. The radius of the octahedral site is larger when it is occupied by the
large Fell jon than by the Mg ion. The tetrahedral sites are small in this
case, although for MgFe;O4 they are somewhat larger than for FegOy,
possibly because of the partly normal structure of the former.

Table 31.III gives 2 summary of the metal ion distribution in a number of
ferromagnetic spinels as determined mainly by neutron diffraction. The
table also gives the cell edges a, the u parameters, molecular weights M and
X-raydensities dz. For the molecular weight the formula MeFe20y, is taken as
the molecular unit. Since an elementary cell contains eight of these molecules,
the relation between the quantities in Table 31.II1 is given by the formula:

8 M
dz ad W g/cm3, (31.3)

where N = 6.02. 1023 mol-! represents Avogadro’s number.

TABLE 31.1II

METAL ION DISTRIBUTION, LATTICE CONSTANT ¢, # PARAMETER, MOLECULAR WEIGHT
M AND X-RAY DENSITY dx FOR SIMPLE FERRITES WITH SPINEL STRUCTURE.

Ferri Metal ion Reference a M dy

errite distribution [ 1] A u g/cm3
MnFez04 Mno.gFeo.2

[Mng :Fe1.g] |Ha3 8.50 | 0.3846 - 0.0003 | 230.6| 5.00

Fe3O4 Fe [FellFe] Sh1,Cl2| 8.39 0.379 £0.001 | 231.6| 5.24

CoFez04 Fe [CoFe] Pr2 8.38 — 234.6| 5.29

NiFe204 Fe [NiFe] Ha 2 8.34 — 2344 | 5.38

CuFes04* Fe [CuFe] Pri1,Ve2 32 f :;g 0.380 £ 0.005 | 239.2| 5.35

ZnFez04 Zn [Fez] Ha2 8.44 0.3854-0.002 | 241.1| 5.33
MgFes04 Mgo.1Feo.9

[Mgo.oFe1.1] |Ba3, Col 8.36 0.381 4-0.001 | 200.0| 4.52

Lio.sFe2.504 Fe [Lio.sFe1.s] Br4 8.33 0.38240.005 | 207.1| 4.75

* Copper ferrite shows a tetragonal deformation below 760 °C [Pr 1]. By quenching to
room temperature, however, the cubic structure can be maintained. Mixed copper ferri-
tes, for example copper-zinc ferrites with not too high copper concentrations, retain
their cubic structure even during slow cooling.
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The lattice constants of mixed ferrites can mostly be found in good approxi-
mation by a linear interpolation of the lattice constants of the constituent
simple ferrites, as for instance is shown for nickel-zinc ferrites in Fig. 31.5.
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Fig. 31.5. Cell edges a in A for mixed nickel-zinc ferrites after [Gu 4]

31.4. ORDERING PHENOMENA

In the ferrites with inverse spinel arrangement, ions having different valencies
occupy octahedral sites. Ordering of these ions gives rise to a gain in elec-
trostatic energy. Up to now, ordering on octahedral sites has been found
in the case of two ferrites, FegO4 and Lip.sFes.504. Ordering can also occur
at tetrahedral sites if these are occupied by ions of differing valencies. This
has been found [Go 3] for the substance Feo.sLio.5 [Cra]Oa.

Magnetite

Various experimental indications exist that Fe3Os has a crystallographic
transition point at 119 °K, which can be related to an ordering phenomenon.
The first indication of a deviation from cubic symmetry was found by Li at
119 °K, [Li 2]. Millar {Mi 1] and Ellefson and Taylor [El 1] discovered an
anomaly in the specific heat of this substance at approximately the same
temperature. Verwey and Haaijman [Ve 4] studied the conductivity (see
§ 45) and found that this dropped suddenly upon cooling below 119 °K
by a factor of about one hundred. This was ascribed to an electron ordering
on the octahedral sites. They predicted an ordering such that successive
(001) layers of octahedral sites are occupied alternately by Fell and Fel™t
ions, thus giving rise to a crystal with uniaxial symmetry. According to
this order the upper two octahedral ions in Fig. 31.2 are, for example, Fe'l
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ions, and the two lower ones Felll
ions. The drop in the conductivity
gradually vanishes as the ferrous-
ferric ratio on the octahedral sites
deviates from unity. The ordering
gives rise to a crystallographic
structure with orthorhombic sym-
metry, as was demonstrated by
Bickford [Bi 2] with strain-gauge
measurements and by Abrahamsand
Calhoun [Ab 1] by X-ray analysis.
Fig. 31.6 gives a picture of the struc-
ture of FegO4 below the transition
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point. The transition from the cubic
to the orthorhombic structure is in-
dicated in this figure. According to
Bickford the changes during the tran-
sition are such that the ¢ axis of
the orthorhombic phase is parallel
to a cube edge, and it is 0.03%
smaller than the cube edge. The face diagonal BD becomes 0.07 $; smaller
and the face diagonal AC becomes 0.06 %, longer. It appears that the edge
of the cube along which the crystal is magnetized becomes the new ¢ axis
of the crystal below the transition point (see § 34).

According to De Boer et al. [Bo 1] the gain in electrostatic energy as a
result of the ordering of divalent and trivalent ions at octahedral sites is ap-
proximately 1.7 eV, which is much higher than corresponds to the low tran-
sition temperature. Van Santen [Sa 2] supposes that this is the consequence
of the long range of the Coulomb forces, unlike that of the exchange forces.
As a result, strong short-range ordering (cluster formation) takes place also
above the transition point. The difference in energy between the “ordered”
and “disordered” state is then quite small, which could be the cause of the
low transition temperature. The transition apparently is one of the first
order, unlike what one would expect for an A—B type of ordering. The
large drop in conductivity indicates that the ordering is nearly perfect im-
mediately below the transition point, showing that the ordering forces are
much stronger than one would expect from this low transition temperature.
Romeyn [Ro 2] assumes that a certain short-range order is always present
in all ferrites with spinel structure. In consequence of the low mobility of
the ions this transition from short-range to long-range order will not gene-

>
[»)

Fig. 31.6. Orthorhombic deformation
of the cubic spinel structure of FezO4
below 119 °K. The spontaneous mag-
netization is in the [001] direction.
After [Bi 2].
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rally be able to take place at the low temperatures at which this occurs in
Fe3O4 by electron diffusion.

Guillaud and Creveaux [Gu 3] observed in the case of cobalt ferrite a
discontinuity in the conductivity between 85 and 90 °K. At this temperature
a fairly abrupt change in the magnetic anisotropy was also found, which
could be derived from curves showing the magnetization of cobalt ferrite
at various field strengths as a function of temperature. Measurements of
crystal structure below this temperature have not been reported.

Lithium Ferrite

Braun [Br4 Jhasshownthatlithium ferriteisaninversespinel, Fe [Lio.sFez2.5]O04.
He found that an ordering of octahedral ions takes place below a tempe-
rature lying in the interval of 734° between 755°C. The ordering is such that
in rows of octahedral ions with the direction [110] there is an alternate
arrangement of successively three ferric ions and one lithtum ion. The struc-
ture remains cubic. As in FegOj the ordering gradually vanishes for deviating
compositions according as the ratio Li/Fe on the octahedral sites differs
from 1/3. Superstructure lines indicating a similar ordering in yFe2O3 are
also found by Braun [Br 4]. A complete analysis of the structure of yFe2Os
is given by Van Oosterhout and Rooymans [Oo 2].

§ 32, Saturation Magnetization
32.1. MAGNETIC ORDERING AND SATURATION MAGNETIZATION AT 0°K

The exchange energy in ferrites is of the indirect (superexchange) type,
described in § 8.1. It has been established experimentally that the predomi-
nating exchange energies between the magnetic ions in the ferrites are neg-
ative, as would follow from the theory for half-filled or more than half-
filled 3d shells. These ions include the ferric ions, as well as the divalent metal
ions of the first transition series which can be substituted in ferrites with
spinel structure (see Table 32.1, p. 157).

The magnitude of the negative exchange energies between two magnetic
ions Me and Me’ depends upon the distances from these ions to the oxygen
ion O, via which the superexchange takes place, and on the angle Me-O-Me’;
we shall call these respectively /, I’ and ¢. No quantitative relationship is
known between the exchange interactions and these quantities. In § 8.1
it was shown that an angle of 180° will give rise to the greatest exchange
energy, and that the exchange energy in general decreases very rapidly with
increasing distance. The quantities /, I’ and ¢ for different configurations of
ion pairs in the spinel structure have been given by Gorter [Go 3). Fig.
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TABLE 32.1

NUMBER OF 34 ELECTRONS AND RESULTING SPIN MOMENT OF IONS OF THE FIRST TRAN-
SITION SERIES. THE CURIE CONSTANT Cs PER GRAM-ION ACCORDING TO (6.9) IS GIVEN IN THE
LAST COLUMN.

HAELH
Ions é% EE'E Cg
2z | 551
Sclll | TtV 0 0 0
Tilll | VIV 1 1 0.37
Till | VII | CrIV 2 2 1.00
VI | CrlI| MnlV 3 3 1.87
CriI (Mnlll} FelV 4 4 3.00
Mn!! | Felll (ColV 5 5 4.38
Fell |Coll | NilV 6 4 3.00
Coll | Nillt 7 3 1.87
Nill 8 2 1.00
Cyl 9 1 0.37
Cul | Znll| 10 0 0

32.1 shows the configurations of ion pairs occurring in the spinel lattice
for which the distances and angles are most favourable for high exchange
energy. The 4 and B ions shown in the figure refer to ions occupying tetra-
hedral and octahedral sites respectively. From a comparison of the different
exchange interactions it follows that the 4B interaction is by far the greatest.
For the first of the two AB configurations drawn, the distances / and /'
(indicated by p and g in the figure) are small and the angle ¢ is fairly large
(¢ = 125°). The maximum BB exchange interaction corresponds to the
first BB configuration drawn in Fig. 32.1; the angle ¢, however, is only 90°.
The weakest will be the 44 exchange interaction for which the distance r
is relatively large (=~ 3.5 A) and the angle ¢ unfavourable (¢ = 80°). The
magnitude of the exchange energies is affected by deviations in the oxygen
parameter u from the value 3/8. If u > 3/8, which for most ferrites is the
case (see Table 31.1I), the oxygen ions are displaced in such a way that in
the 4B interaction the distance between the 4 and O ion is increased and
that between the B ion and the O ion is decreased. Also the angle ¢ is de-
creased. The resultant influence upon the interaction is not known. The A4
interaction is reduced, while the BB interaction increases owing to the reduc-
tion of the distance in p. Because of the relative magnitudes of the exchange
interactions one may expect the spins of the 4 and B ions in ferrites with
spinel structure to be oppositely oriented, so that when T = 0 there will
be two saturated and oppositely magnetized sublattices present. The resul-
tant magnetization is thus the difference between the magnetization of the
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AB BB AA
B
(s,
AN
A
P= 12509 154°34' 90°
Distances Me-O | Distances Me-Me
p=a@E—uw b= (a/®)y2
qg=alu—Py3 ¢ = (a/8))11
r=a(l + w)y11 d = (a/4)y3
s =altu + %)]/3_ e = (3a/8))3
f = (a/®y6

Fig. 32.1. Some of the configurations of ion pairs which probably make the greatest con-
tributions to the exchange energy in the spinel lattice. Ions 4 and B are metal ions on
tetrahedral and octahedral sites respectively. The large open circle represents an oxygen
ion. The distances between the ions are given in the Table below. The angles ¢ apply to
the ideal parameter # = 3/8. The figure is drawn for u > 3/8. The centre-to-centre dis-
tances of the ions, expressed in the lattice constant a and the oxygen parameter u are given
below.

octahedral lattice (B) and that of the total tetrahedral lattice (4), whereby
the first will generally have the largest value. This was first postulated by
Néel [Ne 1], and is experimentally well confirmed, as appears from Table
32.11 for a number of simple ferrites. In the last column of this table the

TABLE 32.11

EXPERIMENTAL AND THEORETICAL VALUES OF THE SATURATION MAGNETIZATION OF
SIMPLE FERRITES WITH SPINEL STRUCTURE IN BOHR MAGNETONS AT 0 °K.

Postulated ion distribution | Magnetic | Magnetic | Magnetic moment
moment of | moment of] per molecule

Ferrite tetrahedral | octahedral |tetrahedral|octahedral MeFe;04
ions ions ions ions theoretical | experimental

MnFe;04 | Fefli+MnlL! Mnll,+Fell§ 5 5+5 5 4.6
Fe304 | Felll Fell 4 Felll 5 445 4 4.1
CoFez204 | Felll Coll 4 Felll 5 345 3 3.7
NiFex04 | Felll Nill 4 Felll 5 245 2 2.3
CuFezO4 | Felll Cull 4 Felll 5 1+5 1 1.3
MgFesO4 | Fell Mgl 4 Felll 5 045 0 1.1
Lio.sFez,504 | Fe™ Li§ 5 +Felll 5 0+ 7.5 2.5 2.6
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average values are given of the magnetic moments as determined by various
authors from the magnitude of the saturation magnetization of polycrystal-
line specimens, after extrapolation to 0 °K ([Go 3], [Gu 3, 4, 5, 6], [Pa 1,
2, 31). For inverse ferrites the resultant moment is that of the divalent metal
ion. Use is made of Table 32.1I, which gives the resultant spin moments of
the ions from the first transition series, determined by Hund’s rule (see § 5).

There are at least three causes for the deviations of the magnetic moment
from the theoretical values. In the first place, the ion distribution may not be
the same as that given in the table. As we have seen in § 31.2, this is the case
with MgFe204 and CuFe204. For these ferrites the saturation magnetization
is greater after quenching than after slow cooling. In the second place the
ions may have in addition to a spin moment an orbital moment, which is
not completely quenched (see § 3.2); this is particularly the case for cobalt
ions. We shall return to this point in § 34. The direction and the magnitude
of the average magnetic moments of the ions on the tetrahedral and octahe-
dral sites can in principle be separately determined from neutron diffraction
experiments. Thirdly, angles may occur (see § 9.2), which has not yet been
proved experimentally. The antiparallel orientation of the magnetic moments
of the 4 and B ions has been demonstrated for FesO4 [Sh 1], NiFe2O4 [Ha 2]
and MgFez04 [Ba 2] and [Co 1]. A problem is presented by the magnitude
of the saturation magnetization in the case of MnFe:04. Neutron diffraction
experiments on several specimens have shown [Ha 3] that at 4.2 °K the
average magnetic moment of ions on the octahedral sites is twice as large
as that of the ions on tetrahedral sites, and that the resultant moment cor-
responds to 4.6 pp. For stoechiometric MnFe2Oy4 this value is hard to explain.
An explanation for the resultant moment of 4.6 u.p has been given by Harri-
son et al. [Ha 4] based on the simultaneous occurrence of MnI and Fell
ions.

An interesting aspect, typical of ferrimagnetism, is exhibited by the mixed
zinc ferrites in which the ion distribution is:

11 I 11 11
Zn'; Fel , [Me]" , Fell,] Oa.

Since, owing to the presence of (non-magnetic) zinc ions, the magnetization
of the tetrahedral lattice will be smaller than in the case of the simple ferrite,
and since the FeI jons have the largest moment, the saturation magneti-
zation of a mixed ferrite at the absolute zero point would be expected to
increase with rising zinc content. Thus the remarkable fact appears that the
substitution of magnetic ions in a ferrimagnetic substance by non-magnetic
ions can lead to an increase in the saturation magnetization. Apart from
Zn!! and Cd1, [Ve 2], the non-magnetic ions GaIIl [Ma 1] and In!f [Ma 2]
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also have a preference (although less pronounced for tetrahedral sites and
thus, with small concentrations, increase the saturation magnetization of
simple ferrimagnetic spinels at 0 °K. Theoretically the saturation moment
should rise linearly with the zinc content and should reach the value 10 pp
for 8 = 1, when all divalent magnetic ions have been replaced by zinc ions.
For small concentrations, the linear rise with the theoretical slope has been
found experimentally ([Gu 3, 4, 5, 6] and [Go 3]), as appears from Fig. 32.2.
For larger concentrations, however, deviations are found. The magnetic
moments of the few remaining Fell ions on the A sites are no longer able
to align all the moments of the B ions antiparallel to themselves, since this
is opposed by the negative B-B exchange interaction, which remains un-
affected. According to the theory described in § 9.2, the B lattice will then
divide itself into sublattices, the magnetizations of which make an angle with
each other differing from 0° or 180°. The criterion for this subdivision
is that the ions within one sublattice interact less strongly with each other
than with those in the other sublattices. We have seen in § 31.1 that the
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Fig. 32.2. Saturation moment in Bohr magnetons at 0 °K for various mixed
crystal series For magnesium-zinc ferrites a region is indicated for the
magnetization which is related to the ion distribution. After [Gu3, 4, 5, 6.]
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octahedral sites form four interpenetrating f.c.c. lattices having an edge a.
Owing to the consideable distances between the ions in one sublattice
(3a)/2 = 6 A) the exchange interaction inside a sublattice can be neglected
and therefore these sublattices satisfy the above criterion. But there are four
B sublattices instead of the two for which the theory was evolved. Identical
sublattices, however, can be combined to form two groups in which the
magnetizations are mutually parallel [Ya 1], so that in fact we still have the
division into two sublattices. This is due to the fact that for constant total
magnetization the exchange energy of identical sublattices is independent
of their mutual orientation. As regards the interaction of the Blattice with
the A lattice this is immediately clear. The sublattices with magnetizations
M3, of equal magnitude but different directions, (see Fig. 32.3a), can be
combined to form two groups as indicated in Fig. 32.3b. The Weiss field
exerted by the B sublattices on the magnetic moments of the A lattice are:

Hu,z = nZMp;,

where Mp; is the magnetic moment
of the B; th sublattice. Evidently this
field strength is not affected by a re-
arrangement of the orientations of the
magnetic moments in the way in-
dicated in Fig. 32.2. For the mutual in-
teraction of the B sublattices an ex-
pansion of (9.8) for several identical a b

sublattices is necessary. The Weiss field Fig. 32.3. For constant total magneti-
exerted by the B sublattices on the zation B the sublattices By can be com-

magnetic moments of the sublattice bined into two groups in which the
B, is: netizations are parallel.

Hpg1,p = ni(Mps2 + Mps + Mpgy) + neMapa,
or more generally:
Hpi,p = niMp + (n2 — n))Mp.

From this it follows that the exchange energy in the Blattice is also indepen-
dent of the re-orientation of the magnetic moments as indicated in Fig. 32.3.
If, then, we put the four sublattices parallel in pairs and introduce the con-
stants 81 and Bz, we get Bs = 284, since each of the four sublattices interacts
with another sublattice having parallel magnetization (this has now become
an internal exchange interaction), and with two sublattices whose magneti-
zation is not parallel. According to (9.10) we then find:
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B = —iﬁ and B2 = gﬁ. (32.1)

For the A lattice a division might possibly take place in the two
interpenetrating f.c.c. lattices, so that the difficulties described above for
the B lattice do not arise. Here too the interaction within one sublattice
can be neglected, so that now:

a1 =0 and az = 2a. 32.2)

Since we may expect the A—A exchange interaction to be small, angles
will probably never form in the A lattice; no experimental indications of
their the existence have so far been encountered.

On the B lattice angles will occur with increasing zinc content, for com-
positions where, according to (9.12) and (32.1):

B > 3Ma/4M3p. (32.3)

The saturation will then decrease with increasing zinc concentration and,
according to (9.14), will be equal to:

Mo=(1—3/48)M 4. 324

The curves found experimentally for My as a function of the chemical com-
position (Fig. 32.2) broadly follow the two straight lines predicted by the
theory (8 being assumed to be constant). According to the theory, angle
formation will occur at a certain zinc concentration. The gradual bend of
the saturation curves under the dashed lines is explained by Néel [Ne 7] as
being due to the occurrence of fluctuations in the ratio of the numbers of
zinc and ferric ions on the tetrahedral sites surrounding the various octa-
hedral sites, 7.e. fluctuations in the tetrahedral-octahedral interaction.

The ferrite ZnFezO4 is paramagnetic. From the foregoing it might be
expected to be anti-ferromagnetic, having the ordering described with a
Néel point of the order of 100 °K or more. Paramagnetic measurements
have never, however, revealed a Néel point for this substance. Moreover,
neutron examinations at room temperature indicate that no ordering of the
magnetic moments of the ferric ions exists [Ha 2], although a peak has been
found in the specific heat at about 9.5 °K; see Fig. 32.4 [Gr 2]. It has been
suggested by Anderson [An 2] that the non-occurrence of antiferromag-
netism in zinc ferrite is due to the fact that the four sublattices on the B
sites have to be formed, so that some degeneracy remains. When ZnFe»O4
is rapidly cooled from a high temperature, it becomes ferrimagnetic because
not all the zinc ions occupy tetrahedral sites.
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Asmaybeexpected, substitution
of non-magnetic ions on the oc-
tahedral sites of the spinel struc-
ture causes a decrease in the satu-
ration magnetization, even at the
smallestconcentrations. Examples
are substitutions of AT ([Go 3],
[Ma 2]), Sc I [Ma 2], Nitf 4
TilV [Go 3] and also the substi-
tution of Cr'' for Fell on oc-
tahedral sites [Go 3].

The saturation magnetization
of the ferromagnetic spinels can
be explained very satisfactorily if
one assumes a predominant ne-
gative exchange between the mag-
netic ions on both kinds of lattice
sites. A negative exchange is also
found in many oxides other than
the spinels. The magnetic oxides
with perovskite structure, which

[CH. VIII

n

10 1 /
9

2Zn Feg 04 /
8 /£

—— Cp cal/mol °K
~

“ /

3 7

AN

-

1H

1

7

ol

0 20 80 80 100

—T (k)

Fig. 32.4. Specific heat in cal per gram mole-
cule for ZnFe20;4 as a function of temperature.
(After {Gr 2].)

have been studied by Jonker and Van Santen [Jo 2] are an exception in the
group of oxides. The perovskite structure is shown schematically in Fig. 32.5.

Fig. 32.5. Idealized elementary cell
of the perovskite structure.

Large divalent or trivalent ions 4 occupy
the corners of a cube and small trivalent or
tetravalent metal ions B occupy the centre
of the cube. The oxygen ions are situated
centrally on the faces of the cube. The
general chemical formula of these sub-
stances is ABQOj3. The substances with inte-
resting ferromagnetic properties were found
in the mixed crystal series LallIMn!O3 —
CallMnIVOs3, LallTMnIQ3—BalTMn!V O3,
LallIMnIQ3 — SrII™Mn!VO3 and in the
corresponding series LalIColllQg —
SriICo!VO3. These series of compounds
are designated respectively as manganites
and cobaltites. At sufficiently low tempe-
ratures all manganites containing both tri-
valent and tetravalent manganese ions are
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ferromagnetic. In order to explain the saturation magnetization in these
oxides, it must be assumed that the magnetic moments of ions B (Fig. 32.4)
separated by an oxygen ion have parallel orientation. The highest Curie
point is 370 °K. The magnitude of the saturation magnetization at low
temperature (90 °K) is given in Fig. 32.6 for mixed crystals of (La, Ca)

G (gauss cm3/g)

-
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-
-
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00 P

”_——“fr ,\
/ Lay-§ CagMnO3
80 ‘ 7-¢ “ag

L

Fig. 32.6. Saturation magnetization
20 at 90 °K of mixed crystals
Laj-3CasMnO3. The calculated
broken line represents the saturation
0 0 20 0 80 80 10  moment in the case where all ionic

—_— 4 moments are parallel. (After [Jo 2].)

MnOs. The broken line in this figure shows the magnitude of the saturation
magnetization assuming that the magnetic moments of all ions are parallel.
We thus have here for a range of compositions a true ferromagnetism.
From the curve in Fig. 32.6 it must be concluded that the exchange energy
between the Mn!l and Mn!V ions via the oxygen ion lying diametrically
between them is positive and predominant. A corresponding situation is
found with the cobaltites of the (La, Sr)CoQj series; see [Jo 3].

32.2. TEMPERATURE DEPENDENCE OF THE SATURATION MAGNETI-
ZATION

According to § 9 various types of curves may be expected for the saturation
magnetizgtion M, as a function of the temperature T for ferrites; see for
instance Figs. 9.3 and 9.6. It appears, however, that all simple ferrites
with spinel structure and all mixed zinc ferrites show a fairly normal M,
versus T curve (see Fig. 32.7). Normalized curves for simple ferrites as given
by Pauthenet [Pa 1] are reproduced in Fig. 32.8. In the case of CuFe204
and MgFe2O4 these curves are highly dependent on the method of preparing
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Fig. 32.7. Saturation magnetization per gram, o, for simple ferrites
with spinel structure as a function of temperature T.

the specimen since Cu and Mg ions can occur on both lattice sites. The form
of the M versus T curves in Fig. 32.8 can be explained with the Weiss field
theory. If we assume in first approximation that the exchange interactions
between the magnetic moments in each sublattice are zero, a = 8 = 0, see
(9.6) then the Weiss field at T = 0 in the A4 lattice is approximately twice
as large as in the B lattice (inversely proportional to the magnetizations of
the sublattices). As a result the M; versus T curves of the A4 lattice will be
much more convex than those for a simple ferromagnetic substance, and
the curve for the B lattice will be less convex. The total magnetization is
that of the B lattice reduced by that of the A lattice, and the curve will
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4 Fe304 ‘\
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Fig. 32.8. Normalized curves
of the saturation magnetiza-
tion of simple ferrites with
spinel structure as a function
of temperature, after [Pa 1].
For comparison the Lange-
vin curve is given for the
case that elementary magne-
tic moments of two Bohr
magnetons are present (j=1).
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therefore be less convex than
that of a simple ferromagnetic.
A finite positive value of S makes

the Weiss field in the B lattice (OTZ,

even smaller, and will therefore
intensify the effect, while a finite
positive value of o« makes the
Weiss field in the A lattice smal
ler, and will counteract the effect.

Table 32.11I gives a survey of
the saturation magnetizations
and Curie points, and also indi-
cates the magnetization per
gram, ¢ = M,/d; the latter is
an intrinsic quantity of the ma-
terial, which is not the case with
M; in porous substances. The
relation between o at 0 °K and
the number of Bohr magnetons
np per molecule MeFe2Oy is

given by:
M M
=g =—”:"0, (32.5
G T T

where M is the molecular weight
of the substance corresponding
to one molecule MeFe204, given
in Table 31.1IL
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Fig. 32.9. Curie points of some series of
mixed zincferrites Me1-;Zn;FesO4 as a funct-
ion of the zinc concentration.

TABLE 32.II1
THE SATURATION MAGNETIZATION Ms IN GAUSS AND o IN GAUSS CM?3G, TOGETHER
WITH THE CURIE POINTS T¢c OF SOME SIMPLE FERRITES WITH SPINEL STRUCTURE.

0°K 20 °C
. o o T
Ferrite s | Mo | 4TM, | 0| M, | 4n, 0s
cm3 / g gauss gauss cm3 /g gauss gauss
MnFe;04 112 | s60 | 7000 | 80 | 400 | 5000 300
FeaOs 98 | 510 | 6400 | 92 | 480 | 6000 585
CoFes0a 9 | 475 | 6000 | 80 | 425 | 5300 520
NiFez04 56 | 300 | 380 | 50 | 270 | 3400 585
CuFesO4 30 | 160 | 2000 | 25 135 | 1700 455
MgFez04 31 | 140 | 1800 | 27 | 120 | 1500 440
Lio.sFe2.504 69 | 330 | 4200 | 65 | 310 | 390 670
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Owing to the reduced 4—B exchange interaction with increasing zinc
content in the case of mixed zinc ferrites with spinel structure, the Curie
point will drop as a result of the substitution of zinc. This was first found
by Forestier [Fo 1] and is illustrated by the experimental curves in Fig.
32.9. Since the Curie point decreases with increasing zinc content and the
saturation magnetization increases at 0 °K, it cannot be predicted how the
saturation of a ferrite will change at an intermediate temperature, for in-
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Fig. 32.10. Saturation magnetization per gram, g, as a function of tem-
perature for some ferrites of the Mn;-;ZnsFe204 series.
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Fig. 32.11. The saturation magnetization per gram, ¢, as a function of
temperature for some ferrites of the Ni;_;Zn sFe20;4 series.
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4neM,
(gauss)

Ni Fey-gAlg 04

Fig. 32.12. Three-dimensional graph showing 4mM, versus T curves for different composi-
tions in the series of solid solutions NiFe,_ sAl ;0,, very slowly cooled. The shapes of the
curves are all those predicted by theory (see Fig. 9.3). Introduction of Al (i.e., increasing
3 from 8 = 0) lowers 4#M,, at all temperatures. After [Go 4].

stance at room temperature, if magnetic ions are substituted by zinc ions.
In Figs. 32.10 and 32.11 it can be seen that in the series Mni-3Zn3Fe204
and Ni;-3ZnsFe2O4 the saturation at room temperature increases with &
for low zinc concentrations and reaches a maximum when 3 is equal to 0.15
and 0.35 respectively.

Although the form of the M, versus T curves of the ferrites discussed
so far is still normal, other curves more characteristic of ferrimagnetism
are also found, one example having been givenin Fig. 9.2. Curves of this
kind also occur in the NiFez—5Als04 system, a survey of which is given
in Fig. 32.12. The curve in the plane T = 0 °K indicates the change in the
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saturation magnetization of NiFe;O4 when part of its Fe ions are substit-
uted by Al ions. Since this substitution is made principally on octahedral
sites [Ma 1] and [Sm 3]), the total magnetization M; decreases with
increasing 6, and passes zero at 8 = 0.62; see [Go 3] and [Ma 1]. The
substitution of non magnetic ions on octahedral sites, like the substitution
on tetrahedral sites, causes a decrease in the Curie point, although relatively
less, and the M versus T curves with increasing value of & have the forms
as indicated in Fig. 9.3a and 9.35.

§ 33. Paramagnetism above the Curie Point

The 1/x versus T curves of ferrites with spinel structure are convex above
the Curie point; this is characteristic of ferrimagnetism (see § 10). Exam-
ples for FegO4 and MnFe»O4 are given in Fig. 33.1. The Weiss field theory
yields for two sublattices the following relation, which can easily be derived
from (10.1):

(33.1)

1 T2
l/x==|T—Ta— s
=gl |

T—T,

the Curie constant being C = C1 + Cp, where C1 and C3 are the Curie
constants of the 4 and B lattices and are related to the properties of the ions
according to (6.9). Fig. 33.1 gives the molar susceptibilities xmo1, SO that the
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Fig. 33.1. The reciprocal value of the molar susceptibility, 1/Xpe1, as a function
of temperature for MnFe204 (after [Cl 3]) and Fe3O4 (after Kopp, see [Ne 1]).
The asymptotes for high temperature are drawn in with the theoretical spin-
only slope according to the Curie constants in Table 32.L
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Cs values per gram-ion must be taken, as given in Table 32.1, and multiplied
by the number of ions on the site in question, as occurring in the formula
MeFe;04. The equation (33.1) represents a hyperbola the asymptotes of
which bisect the T axis at T, and T, given by:

T - C12W11 + 2C1CeWig + Co2Waa _ —n(aCr?2 +2C1Ce + BC2?%)

. (33.2)
CL+ C2 Ci1+ C
and CiC C1C2(2 B
1Ce nCiCe(2 — a—
Ty = —— (W11 — 2W; Wag) = . ; 333
a it Cz( 11 12 + Was) Ci i Co (33.3)

The curvature of the 1/y versus T curve is related to T, which is given by:
Ty = Cy(Wir— Wiz) + Co(Wis— Waz) =n[Ci(1 — a)— Co(1— B)]. (33.4)

For negative exchange interactions (a,8 > 0) we have |T4| > Ta'. Figure
33.1 gives the asymptotes for high temperatures with the theoretical spin-
only slope. Conversely it should be quite easy to determine the values of
a and B from the measured 1/x versus T curves. This has been done for a
number of ferrites and the results are reproduced in Table 33.1. The result
depends very much on the assumption of theion distribution over tetrahedral
and octahedral sites. A small percentage of zinc ions on octahedral sites
will influence the calculated molecular field constants to a high degree.

TABLE 33.1

MOLECULAR FIELD COEFFICIENTS CALCULATED WITH THE WEISS FIELD THEORY FROM
MEASURED 1/x versus T CURVES,

Ferrite a B Reference
MnFe204 0.82 0.28 Cl3
FesO4 0.51 — 0.01 Ne l
NiFe204 0.21 0.15 Ne 8
Nio.sZno.2Fe204 0.48 0.16 "
Nio.aZno.6Fe204 1.16 0.15 "
Nip,3Zno.7Fe204 3.08 0.14 '

It is, moreover, very doubtful whether such detailed data can be obtained
from an approximating theory, which the Weiss field theory is. In § 6.4 and
§ 10 it was shown how short-range order causes deviations from the Weiss
field theory. As a result of the short range order the quantity 1/x becomes
larger, thereby causing a decrease in the Curie point, as illustrated
in Fig. 10.3. This decrease can amount to several tens of percents. High-
temperature bebaviour is not influenced by this, and T, will therefore
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have the correct value, whereas the experimental value of T,’ will be too
low. This would accordingly result in a too large value for a and/or 8 when
applying the eqs (33.2) and (33.3), although it cannot be ascertained from
these equations whether especially o or 8 will be too large. It is seen from
Fig. 10.3, however, that it is just above the Curie point that the slope of the
1/x versus T curve will be too small, and hence the curvature less. This
points to a too large value of |T3|in (33.4). Now C: is approximately equal
to 2Cy, so that a large value of | Tp| corresponds to a too large value of a or a
too small value of 8. This can be understood from the fact that immediately
above the Curie point the magnetizations of the 4 and B sublattices induced
by an external field are still antiparallel. A too large value of x (high mag-
netization in external field) is obtained when the Weiss field in the A lattice
is too small (« large) or in the B lattice too large (8 small). Thus, when
applying the Weiss field theory, we may expect a too high value especially
for a, which is the interaction within the sublattice with the smallest magne-
tization. This is precisely what is found, as can be seen from Table 33.1.
Having regard to the results shown in § 32.1, one can scarcely assume that
a> B,

§ 34. Crystal Anisotropy
34.1. CUBIC CRYSTAL ANISOTROPY

A review of some of the hitherto published values of the crystal anisotropy
constants K; and Kz (defined in (11.1)) for ferrites with spinel structure, is
given in Table 34.1. A striking fact is that all K values are negative, except
those for cobalt ferrite and for ferrites containing a large percentage of
divalent cobalt ions. Bozorth [Bo 2] found that the ageing of cobalt ferrites
has an influence on Ki. It has been found that the anisotropy constants
obtained by a static method of measurement (§ 26.1) may differ from those
obtained with the help of microwaves (§ 26.4) if the single crystal contains
ferrous ions as well as ferric ions.

Table 34.11 gives the results of measurements [Bo 3] carried out on
Nio.gFe2.204 having a resistivity of only 1 ohmem (which points to a certain-
concentration of ferrous ions) and on the ferrite MnFe;.904, which is de-
ficient in iron and thus probably contains no ferrous ions. The authors
attribute the difference in the case of the nickel ferrite at -196° to rearrange-
ments of electrons on the iron ions when the orientation of the magnetization
changes. The values of K; will then depend on whether the measurement
has been carried out at a frequency which is much larger or much smaller
than the reciprocal of the time constant which determines the electron
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TABLE 34.1

CRYSTAL ANISOTROPY CONSTANTS K; AND K; OF A NUMBER OF FERRITES WITH SPINEL
STRUCTURE AT 20 °C AND -19 °C,

Temperature K1 K>

Composition “C erg/cm?® erg/cm3 Reference
Fe304 20 —110 %103 —280 x 103 Bi3
b; 20 — 28103 — Bo 2
MnFez04 —196 | —187x10° — .
—269 —210x 103 g| —100x 103 Di2
Mno.9sFe1.8604 —196 —200x103 g — 3x103 ’
27 — 28x103aq] — 2Xx103 ’
90 + 0.9 x 108 — Ta?2
CoFe204 200 + 66x103 — '
280 =0 — -
N —196 + 4.4x108 — Bo 2
Coo.gFez 204 *) 20 | +29x108 _ ”
Co1.1Fe1.904 20 + 1.8x108 — Bo2
R 3 —196 — 87x103 _— Gal
NiFez04 20 | — 62x10° — Gal,Ya2
—196 —206x10% a — Ok 1
CuFe204 20 — 60X103 a — '
400 — 1x103a — »
MgFea04 **) 20 — 25x108 — Ra2
Mno.45Zng.55Fe204 20 —3.8x103 a —_— Ga2

a Obtained from microwave measurements; the values not denoted by a were found
from static measurements.

b The values denoted by a bracket apply to the same specimen.

* These values apply to a specimen aged for three days at 150 °C. After quenching the
specimen in air from 400 °C the same authors found K1 = +3.9 X 108 erg/cm3.

** Value extrapolated to zero ferrous content.

TABLE 34.11

THE CRYSTAL ANISOTROPY CONSTANT K; AND THE ANISOTROPY FIELD 2|K;|/Ms AS DEPEN-
DENT ON TEMPERATURE AND FREQUENCY ACCORDING TO [Bo 3].

Nio.sFez.204 MnFe; 404
Temperature Method of 2 M, K 2| K1/ M,
Perature | measurement K | Kaf/ M, 1 | K|/ M,
erg/cm3 oersted erg/cm3 oersted
o static —39x 102 260 — 34x103 180
20°C \ | microwave | —43x108 280 — 33%108 175
o static —42x103 260 —240x 103 840
=196 °C\ | microwave | —74x108 468 —233%103 812
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transitions. A similar electron ordering is also proposed to explain an ex-
cessive width of the ferromagnetic resonance line and also as the cause of
relaxation losses occurring at entirely different temperatures and frequencies
[Cl 4]; see § 36.1 and § 54.3 respectively.

An extensive investigation of FegO,4 has been carried out to determine
the change of the crystal anisotropy constants K; and K3 with temperature.
Fig. 34.1 gives the result of the static measurements by Bickford [Bi 3].
Results obtained earlier by the same author, but from microwave measure-
ments, are virtually no different from these. The variation of K; with tempe-
rature is quite anomalous: a change of sign takes place at 130 °K: below
this temperature K is positive, above this temperature it is negative. This
temperature does not coincide with the transition point for FegOy, dis-
cussed in § 31.4, which point lies at a temperature approximately 10° lower.
In the orthorhombic structure the ¢ axis is the preferred direction of mag-
netization. Upon cooling below the transition point of 119 °K the cube
edge along which the magnetization is aligned is the orthorhombic axis
(see [Do 2)).

Bickford [Bi 3 ] has examined the change in the crystal anisotropy constants
of Fe304 when small percentages of ferrous ions are replaced by cobalt ions.
In Fig. 34.2 and Fig. 34.3 the quantities K1 and K respectively are plotted
as a function of temperature for mixed cobalt ferrous ferrites CosFe3—,O4
where & = 0, 0.01 or 0.04. The cobalt contribution to the anisotropy for
these small concentrations is found to be proportional to the cobalt
content. For higher cobalt concentrations the anisotropy increases less
rapidly, [Pe 1]. By the addition of cobalt ferrite the zero point in the crystal
anisotropy of magnetite is shifted towards higher temperatures; for example

5

x

% Fe3 04
Ky kpy O
(10%rg/em3) ?\\. Ka
e Gt O]
T ) \ /
]
-10 x //

s Ny _ .
x Fig. 34.1. Temperature varia-

tion of crystal anisotropy
100 200 300 400 500 constants Ki and Ka of

— T(°K) magnetite. (After [Bi 3).



§ 34]

Ky (10%rg/cm3)

\ COJ FE3—JO4
(o]

3

=0.04

K

&
\_O_H

~

—O—

|0

.l
300 400 500
—» T(°K)

Fig. 34.2. The crystal anisotropy con-
stant K1 versus temperature for mag-
netite and cobalt-substituted magnetite
CosFe3-504. (After [Bi 3]).

CRYSTAL ANISOTROPY

165

in the case of the compound & = 0.01
it lies at room temperature. Van der
Burgt [Bu 2] has also found that the
crystal anisotropy of mixed ferrites
with cobalt ferrite has generally not
the value as is derived simply from the
contributions of the compounds. He
found moreover that for instance the
introduction of cobalt in Nio.5Zne.5
Fe204 gives per cobalt ion a change in
the anisotropy which is only one six-
teenth of that when the same amount of
cobalt is introduced in FesO4. The co-
balt contribution to the anisotropy de-
pends of course on the site the cobalt
ions occupy in the structure and also
on the kind of the surrounding ions.
The cause of the crystal anisotropy
must be sought mainly in the spin-
orbit interaction in the divalent metal
ions, since the ferric ions have a half-
filled shell, that is to say they have no

orbital moment in the ground state.
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Fig. 34.3. The crystal anosotropy constant Kz versus temperature
for magnetite and cobalt-substituted magnetite CosFe3-504.

After [Bi 3.
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With most ions (MnIl, Fell, Nill, Cull) the orbital moment is quenched
(§ 3.2) and the spin-orbit interaction introduces only a relatively small
anisotropy. In Coll, however, the crystal field is not able to remove the
orbital degeneracy, and the orbital moment is of the same order of magnitude
as the spin moment. This must be regarded as the cause of the large aniso-
tropy of cobalt [S] 2], which manifests itself also in the field-cooling effect
(to be dealt with in the following section), in magnetostriction and in the
g factor. Yosida and Tachiki [Yo 1] examined theoretically the various
mechanisms that can give rise to crystal anisotropy in the ferrites with spinel
structure and came to the conclusion that dipole energy, as treated at the
end of § 12.1, and mechanism (b) of § 12.1, cannot explain the anisotropy
observed in nickel ferrite; they can, however, explain the order of magnitude
in Fe3O4. Mechanism (a) of § 12.2 was not, however, considered.

34.2. INDUCED UNIAXIAL ANISOTROPY

In ferrites with cubic crystal structure a uniaxial anisotropy can be brought
about by subjecting the material to an annealing treatment in a magnetic
field. If a single crystal of a ferrite specimen has a sufficiently high Curie
point, for example above 250 °C, and if it is allowed to cool slowly from this
temperature to room temperature, one finds in many cases that a uniaxial
magnetic anisotropy is superimposed on the cubic anisotropy. The effect
occurs particularly in ferrites containing cobalt. Bozorth ef al. [Bo 2] found
for a single crystal, denoted by the formula Coo.32Zno.24Fe2.1804, that the
direction of the magnetic field becomes the easy direction of magnetization
for the uniaxial anisotropy, irrespective of the direction of this field with
regard to the axis of the crystal. Penoyer and Bickford [Pe 1] found that in
single crystals of magnetite with low cobalt concentrations (Co,Fes—;04,
where 8 < 0.15) the direction of the induced uniaxial anisotropy does not
generally coincide with the direction of the magnetization during magnetic
annealing, and moreover that the magnitude of the uniaxial anisotropy
depends on the direction of the magnetic field during the magnetic annealing
process with respect to the crystallographic axes. From an analysis of the
results of their measurements it appears that the coefficients F and G in-
troduced in (11.9) depend respectively quadratically and linearly upon the
cobalt concentration & (see Fig. 34.4). The same figure indicates the results
of measurements performed by Bozorth et al. [Bo 2] to determine the uni-
axial anisotropy of polycrystalline specimens. A maximum effect occurs in
compositions with larger concentrations of both cobalt and ferrous ions.
The ferrous ion and cation-vacancy concentration appear to be important
for promoting diffusion. The magnitude of the uniaxial anisotropy depends
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Fig. 34.4. Drawn curve — uniaxial Ky {Ioserg/cm-?)
crystalline anisotropy energy Ki 2.51

as a result of magnetic annealing

of specimens of CosFes—504, after T Cog Fe3-504

[Bo 2]. The broken curves represent 20
the coefficients F and G of eq. " h
(11.9), after [Pe 1].
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upon the duration of the magnetic annealing and on the temperature at
which it is carried out. Bozorth ef al. [Bo 2] have found the same activation
energy of 0.94 eV for this process in the case of single crystals and a poly-
crystalline specimen of different compositions. The greatest anisotropy is
found when the specimen has been aged for three days at the lowest tem-
perature which, in their case, is 150 °C. For small cobalt concentrations
the annealing process is much more rapid; in the method adopted by Pe-
noyer and Bickford the annealing time was 5-10 minutes at 100 °C.

The phenomenon of magnetic annealing has long been familiar as far as
alloys are concerned, and various theories have been put forward to explain
it. It does not seem probable that the anisotropy arises from anisotropic
magnetostriction, because the phenomenon is also found with single crystals
which can deform freely without the occurrence of stresses. The separation
of a second phase in needle or disk form is a possible cause. In § 11.2 a
theory was given in which the ordering of ion pairs in a certain direction
under the influence of the magnetic field is described as the cause of the uni-
axial anisotropy. When discussing the spinel structure in § 31.2 it was pointed
out that the surrounding of a single octahedral site by the metal ions, and
also by the oxygen ions when u # 3/8, possesses no cubic symmetry but
becomes uniaxial with a symmetry axis along one of the [111] directions
(see Fig. 31.3). The occurrence of crystal fields having this symmetry may
therefore be expected. According to mechanism (b) in § 12.2, this could give
rise to a magnetic anisotropy with this particular [111] direction as the axis
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of symmetry. The total anisotropy, then, will depend on the occupation of
the four possible kinds of octahedral sites by foreign ions. With this mecha-
nism Penoyer and Bickford [Pe 1] explain the term G in (11.9) which has
the appropriate symmetry. Since this is a property of a single ion the effect
in first approximation will be proportional to the concentration, and this
was in fact found. The term F, which was found to be proportional to 82,
is then to be explained by pair orientation. The connecting lines lie along the
[110] directions which, in alloys, would give rise to an f.c.c. symmetry of
the anisotropy (G = 4F) so that then G — 4F and not G would be propor-
tional to the concentration of cobalt ions. This is not found experimentally.
It must therefore be assumed that pair orientation gives rise to a simple cubic
symmetry. This is plausible, since the exchange interaction between two
cobalt neighbours is not direct but takes place via the two intermediate
oxygen ions (see Fig. 31.3). These four ions lie in a cube face. For each ex-
change interaction we can therefore expect an anisotropy along the line
connecting the Co ion and the oxygen ion. Since there are two such lines
for each Co pair, there is no anisotropy in the said cube face, but the easy
(or difficult) direction is perpendicular to the cube face determined by the
two Co ions. Hence we must in fact expect an anisotropy of the simple cubic
type, corresponding to the F term in (11.9). This crystal anisotropy, then,
is of the type (a) of § 12.2. During cooling in the absence of a field a preferred
direction will also arise owing to diffusion in each Weiss domain in the case
of the mixed cobalt ferrites.

§ 35. Linear Magnetostriction

The magnetostriction constants Ajop and A111 have been measured on single
crystals of ferrites with the aid of strain gauges [Go 2]. The results are given
in Table 35.1. On the manner in which the magnostriction constants change

TABLE 35.1
MAGNETOSTRICTION CONSTANTS OF FERRITES WITH SPINEL STRUCTURE AT 20 °C.
Ferrite , 108. 4100 108. 4111 Reference
FesOaq — 20 + 78 Bi4
Cog.sFeo.2Fe204 —590 +120 Bo2
Nio.sFeg.2Fe204 — 36 — 4 Bo2

with temperature little is known. Fig. 35.1 gives the constants Aigo, Ar11
and Ao for a synthetic single crystal of FesO4 according to Bickford
[Bi 4]. The values of the saturation magnetostriction A; measured on poly-
cristalline specimens of simple ferrites and on a series of nickel-zinc ferrites
are given in Table 35.II.
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Fig. 35.1. The magnetostriction constants Aipo, A111 and Azre
versus temperature for synthetic magnetite single crystal.
(After [Bi 4)).

TABLE 35.11

LINEAR SATURATION MAGNETOSTRICTION 33 FOR SIMPLE FERRITES AND MIXED NICKEL-
ZINC FERRITES WITH SPINEL STRUCTURE AT 20 °C.

Ferrite As. 108 Reference
MnFe204 —5
Fe304 +40
CoFes04 —110 Gu7
MgFe204 — 6 Sm 4
Lio.sFe2.504 — 8 En1
Nig.36Zno.64Fe204 — 5
Nio.50Zn0.50Fe204 —11
Nio.64Zn0.36Fe204 —16
Nio.s0Zno.20Fe204 —21
NiFe204 —26 Sm 4

The magnetostriction at room temperature is positive only for the elec-
trically conductive Fe3O4. This is because A11; is relatively highly positive;
see (13.3). It may be expected that in the case of mixed crystals of a ferrite
with FegOj it must be possible to have a ratio of components such that the
saturation magnetostriction will be zero. In Fig. 35.2 the magnetostriction A
is plotted as a function of the magnetic field H for polycrystalline specimens
consisting of mixed crystals of Fe3O4 and NiFe;04. It appears that the satu-
ration magnetostriction varies gradually with the composition and has a
value of zero at about the composition Nip.z6Fello.4aFe20s. For the
simple ferrites the A versus H curves are monotonic. For specimens with
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a composition of approximately Niz/sFel/3 FezO4 the magnetostriction
as a function of the field strength shows a reversal point, as found in
the case of the metal iron (Villari reversal point). The reason for this is
that the magnetostriction in small fields, of the order of magnitude of
the coercive force, is mainly the result of irreversible wall displacements
which turn the magnetization towards a new preferred direction lying
closer to the direction of the applied magnetic field. Where, for exam-
ple, the cube diagonal is the preferred direction of the magnetization,
this process is connected with the magnetostriction constant Ain. For all
field strengths there is superimposed on this magnetostriction a contribution
caused by the rotation of the magnetization in each Weiss domain out of
the preferred direction towards the direction of the applied magnetic field.
This magnetostriction is also determined by A100 in the case considered, and
it predominates at field strengths that are large compared with the coercive
force of the material. If X111 and A0 have different signs, then one can
expect curves of the different types shown in Fig. 35.2. Conversely, such
curves point to the magnetostriction having a different sign in the easy and
difficult directions of the magnetization. Thus, from the trend of the A versus H
curve for small fields in polycristalline specimens we can get an idea of the
magnitude of the magnetostriction in the crystallographic preferred direc-
tion of the magnetization. In the mixed crystal series of manganese ferrite
and magnetite, compounds with very small values of magnetostriction have
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Fig. 35.2. Magnetostriction versus magnetic field for polycrystalline
specimens of mixed crystals of the NigFe1-sFesO4 series. (After [Wi 4]).
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been found. Since the crystal anisotropy is also small, very high initial
permeabilities can be realized with thes ferrites (see§ 48.1). The manga-
nese-zinc ferrites, much used in practice, always contain so much ferrous
ferrite that the magnetostriction at all ficld strengths has an absolute
value lower than approximately 1 X 1078,

§ 36. Dynamic Properties
36.1. INDUCED FERROMAGNETIC RESONANCE

Fig. 36.1 gives an example of the absorption line caused by ferromagnetic
resonance in a single crystal of a ferrite with spinel structure, in this case
Mnyp.9sFe1.8604 (see [Di 2]). A measurement was made of the energy ab-
sorption in a cavity by a single-crystal sphere with a diameter of about
3 mm; p”’ was determined from the result with the aid of (23.2). The orienta-
tion of the single crystal was such that, for each curve, one of the crystallo-
graphic principal axes was parallel to the strong external magnetic field.
The magnitude of the magnetic fields H1, Hz and Hs, which, at a given fre-
quency f, are needed for resonance in the [100], [110] or [111] directions,
is given by the eqs (26.10). From the magnitude of H; and M the values
of K; and g are determined; the results are given in Tables 34.I and 36.1.
These tables include the g factors and anisotropies found in this way for
several kinds of single crystals.

The width of the ferromagnetic resonance line is determined to a great
extent by the ferrous concentration in the single crystal. Crystals of ferro-
magnetic spinels having a low ferrous content can yield minimum line-
widths of approximately 50 Oersteds (see for example Fig. 36.1). The results of
line-width measurements on nickel-ferrite single crystals containing ferrous
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ions are reproduced in Fig. 36.2 [Ya 4]. A dimensional effect occurs since
the line width in the case of too large spheres is increased by eddy current
losses. It can be seen from the figure that the line width increases with the
ferrous ion concentration. As a function of temperature a maximum appears
at 160 °K. On the basis of a thermodynamic theory on the relaxation of
electron transitions FelI X Felll the authors arrive at a relaxation time
= which depends upon the temperature according to 7= r_ ¢*", From the
results of the measurement it follows that e = 0.022 eV and 7, = 1.0 10-12
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Fig. 36.2. Ferromagnetic resonance line width 4H as a
function of temperature for two single crystals. containing
ferrous ions. The d.c. magnetic field was in the [111] crystal
direction. The drawn curves apply to various diameters of
the ferrite sphere. The size effect is attributed to the eddy
current losses. (After [Ya 4]).

sec. This activation energy is in agreement with that found for the conduc-
tivity of crystals of the same kind.

For crystals containing no ferrous ions the line width depends upon the
orientation of the crystal (see Fig. 36.1) and it increases towards low tem-
peratures (see Fig. 36.3). The magnitude of the damping parameter o in
(23.10) is related, according to (23.13), with the line width 4H and the re-
sonance field H in accordance with the equation:

2a — AH/H. (36.1)

From the results in Figs 36.1 and 36.3 it follows that « is of the order of
magnitude of a = (50/2) x 3000 = 0.008 for spinels containing no ferrous
ions and rises to a value approximately 10 times higher in the spinels of
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Fig. 36.3. Temperature dependence of the line width 4H in a Mn-Zn
ferrite containing a small (but unknown) amount of zinc and having a
resistivity of about 10¢ ohm-cm. (After [Ta 3]).

higher ferrous content. The damping can also be indicated by a characteristic
relaxation time =:
7= 2H[wdH = 1/aw, (36.2)

which in these two cases is of the order of magnitude of 102 and 1010 sec
respectively.

The shape of the narrow ferromagnetic resonance curves strongly resem-
bles that which is to be expected from (23.12). The difference is that at
equal half-value width and peak height the measured curve lies entirely
within the calculated curve (see, for example, [Ta 3]). If the amplitude of
the high-frequency waves in a ferromagnetic resonance experiment is in-
creased, the shape of the resonance line changes [Bl 2]. The maximum
value of p” is decreased and a second absorption peak appears at lower
frequency for spheres of nickel-ferrite (see Fig. 36.4). An explanation of
this phenomenon as given by Suhl was dealt with in § 23.4.

In the case of the ferrimagnetic spinels in which the magnetic moments
of the ions on tetrahedral and octahedral sites are mutually parallel, the g
factor according to (20.3) is given by

(Miota1)B — (Miota1)4
(Mipin)s — (Mspin)a’

from which it follows that, for a completely inverse spinel, the measured
value of getr is equal to the value of g for the divalent magnetic ion on the

(36.3)

Zett =2
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octahedral site. Results of measurements carried out on single crystals and
on polycrystalline specimens at different temperatures and frequencies are
collected in Table 36.1. The fairly high value of the g factors for NiFezO4
and CozFe204 can explain the difference between the spin-only value for
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Fig. 36.4. The value of p”’
in arbitrary units as a funct-
ion of the d.c. magnetic field
H at 300 °K. At high micro-
wave power level, indicated
by the square of the micro-
wave amplitude Hy, an ano-
malous absorption appears,
especially at the low-field
side of the resonance. (Af-
ter [Bl 2)).

the magnetic moment of these compounds and the measured saturation
magnetizations in Table 32.IL. The result for MnFe;Oy4 is very satisfactory,
since the carriers of the magnetic moments here are Mn!! and Felll, both

TABLE 36.1
EXPERIMENTAL VALUES OF THE EFFECTIVE g FACTOR OF SIMPLE FERRITES
Ferrite Temperature Wavelength Zott Reference
°C cm
MnFe204 —269 3.2 2.060 Di2
—196 . 2.019 4 0.003 ’
27 ' 2.004 4 0.002 .
—269 to 20 various 2.00 Ta3
Fes04 —153 3.35 2.06 Bi5s
—143 3.35 2.08 s
1.25 2.09 "
20 3.35 2.17 -
1.25 2.13 .
CoFe204 90 1.25 27 +03 Ta2
200 1.25 2,27 .
NiFe204 20 1.25 2.19 Ya3
CuFez04 —195 1.25 2.20 Ok 1
450 1.25 2.05 -
MgFes04 20 1.24 2.03 —2.06 %) Ya2
Lio.sFes.504 20 3.18 2.08 Be S

*) From measurements

on polycrystalline samples
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of which have a half-filled 3d shell and are thus in a S state. In the case of
spinels for which the saturation magnetization as a function of temperature
shows a zero point at a temperature below the Curie point, anomalies occur
in the value of the effective g factor (see § 19 and Fig. 19.2).

If, apart from Felll, there are two other kinds of metal ions present in a
ferrite, it is no longer possible to determine from the magnitude of the
saturation magnetization alone how the ions are distributed over the two
lattice sites. Gorter [Go 6] and Smart [Sm 5] have indicated that the ion
distribution can nevertheless be determined from the measured value of
gett and from known values of the g factors for the ions on both kinds of
lattice site. This has been applied to the spinel Nij'sFe™Tig Oy, for which is
found an extrapolated value gest = 2.90 at 0 °K. Assuming that gni"(octy =
2.3 on octahedral sites and that gre™™ = 2.00 irrespective of the lattice site,
then the ion distribution is Feg.7Tio.3[Ni1.5Feo.sTio.2]04. In order to apply
this method it is necessary to know the g factors of the different ions on
tetrahedral and octahedral sites, except for the above example. A similar
analysis has been carried out by Smart [Sm 5] in the NiFe;—sAlsO4 system.
From susceptibility measurements on nickel-aluminate Smart deduced a g
value gniTetry = 3.5 for nickel ions on tetrahedral sites.

36.2. DOMAIN WALL RELAXATION

The movement of individual domain walls can be studied on so-called
“window frames”, which are made from a single crystal and whose sides
are parallel to preferred directions of the magnetization. It is possible to
create in these specimens a simple pattern of
domain walls; an example is given in Fig.
36.5. Galt [Ga 3] has observed the movement
of a domain wall parallel to the surface
of the crystal in the case of FesO, and a
nickel ferrite having a composition (NiO)e.75
(FeO)p.a5sFe203. A typical example of a mea-
sured curve is given in Fig. 36.6, where the wall
velocity is plotted as a function of the mag-
nitude of an applied magnetic field. Oscillo-
scopic observation of the secondary voltage
across a coil shows that this voltage remains Fig. 36.5. Single-crystal ferrite
constant for a long time, indicating that the $3mple used to study motion of
wall has a uniform velocity and that therefore individual ferromagnetic domain

walls. The broken lines indicate
the mass my, in the equation of motion (24.9)  ,ositions of the domain walls.
can be neglected. Equation (24.9) is then (After [Ga 3])




176 INTRINSIC PROPERTIES OF SPINELS [CH. VIII

T=201°K /
6| Niogs FegfosFez 0

(103:"'/5«) v-zs,rsa(/-/iaws)

0 yrd
o1 02 03
— H [0/
Fig. 36.6. Typical plot of actual data for domain wall velocity v as
a function of applied field. (After [Ga 3]).

satisfied if the applied magnetic field is reduced by a critical field below
which no wall movement takes place. This critical field corresponds in
good approximation to the coercive force of the crystal. From the slope
of the straight line in Fig. 36.6 a damping coefficient 8 for the domain wall
displacement can be determined with (24.9) and from this coefficient, after
making a correction for eddy current damping (see [Wi 2]) a damping
coefficient o can be determined with (24.10) for the spin motion as given
by (23.10). Some results of measurements on ferrous ferrites, in which the
damping is probably caused by electron relaxation, are collected in Table
36.I1. Compared with the damping coefficient a, as found from the width
of the ferromagnetic resonance line, there exists a difference of only about
a factor two.

TABLE 36.1I

THE DAMPING COEFFICIENT e OF (23.10) DETERMINED FROM DOMAIN-WALL MOTION AND
FROM THE WIDTH OF THE FERROMAGNETIC RESONANCE LINE ACCORDING TO [Ga 3].

Ferrite ¢ @
Domain wall Ferromagnetic resonance
Fe304 0.066 0.11
(Ni0)o.75(Fe0)o.25Fe203 0.008 0.018



CHAPTER IX

INTRINSIC PROPERTIES OF
FERRITES WITH HEXAGONAL CRYSTAL
STRUCTURE

§ 37. Chemical Compositions and Crystal Structures
37.1, CHEMICAL COMPOSITIONS

A group of ferromagnetic oxides exists possessing closely related hexagonal
crystal structures ([We 2], [Jo 4]). Fig. 37.1 shows a diagram in which the
chemical compositions of the substances to be discussed can be indicated.
The corners of the diagram represent the oxides BaO, MeO and FezOs.
The symbol Me represents a divalent ion from the first transition series,
or it may represent Zn, Mg, or a combination of for instance Lil and Felll,
just as can occur in the spinel structure. The compounds to be described are

Fey0
0 3

W= Ba M92 Fe,G 027
Y = Ba, Me, Ferp 0n2
Z= B(73 Mez F924_ 04_7

AV4 AV \V4 \V4 AV4 \V4 N AV 100

0¢ v >
goo 100 80 60 40 20 0 Meo

Fig. 37.1. Composition diagram for the ferromagnetic ferrites. The symbol Me represents
a divalent ion (or a combination of divalent ions)
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produced by firing at a temperature above 1000 °C the appropriate mixture
of the oxides represented by the corners of the composition diagram. It is
also possible to start from mixtures of compounds, for example carbonates
of the metal ions. The method of preparation is analogous to that for ferro-
magnetic spinels. On the line connecting BaO and Fe;Oj3 in the diagram
there is a point which represents the non-ferromagnetic barium ferrite
BaFe204. At an equivalent position is found the point S on the line between
the oxides MeO and FesOs, which represents MesFe O with the cubic
spinel crystal structure (see Chapter VIII). The point M represents the oxide
with chemical composition BaFe 2019 = BaO.6Fes03 ([Ad 1], [We 2]),
which has a hexagonal crystal structure and which is one of the ferromagnetic
oxides to be dealt with in this chapter. Another important compound is
represented by point Y, having the chemical formula BasMezFe 2022 =
2(Ba0.Me0O.3Fe203). This compound possesses a hexagonal crystal struc-
ture differing from the M structure [Jo 4]. In order to establish the position
of Y, the diagram also indicates the hypothetical BaO.2FezOs. Twice the
simplest chemical formula unit has been chosen for the composition of the
compounds S and Y. As we shall see later, this has the advantage that the
simplest crystallographic blocks, from which the different hexagonal struc-
tures can be built up, contain exactly the number of ions indicated by this
chemical formula. Many chemical compounds are found on the lines
M-S and M-Y, ([Wi 5], [Br 1], [Jo 4, 5]). However, the elementary cells of
these crystal structures can be built up in a simple way from those of S,
M and Y. We shall therefore deal first with the crystal structures of the
latter compounds. In most cases the Ba ion can partly or completely be
substituted by a Ca, Sr or Pb ion, which have approximately the same ionic
radii (see Table 37.I), or by a trivalent ion, such as La™I, In the latter case

TABLE 37.1
GOLDSCHMIDT IONIC RADII
Ion Radius in A
o1 1.32
Call 1.06
Srit 1.27
Ball 1.43

PbIL 1.32

an equivalent amount of the ferric ions become ferrous ions. It is also possible
in these crystal structures to replace the trivalent ferric ion by the trivalent
ions of Al or Ga, or by an equivalent amount of a combination of divalent
and tetravalent ions. For example, 28 ferric ions in the M compound re-
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placed by & cobalt jons and 8 titanium ions yield a compound with chemical
formula: BaCosIITisIVFe;3-25019 (see [Ca 2]).

37.2. HEXAGONAL CLOSE-PACKED STRUCTURE

The hexagonal close-packed structure is represented schematically in Fig.
37.2a. The centres of the ions B lie in a horizontal plane and form equilateral

Fig. 37.2. Schematic representation of the close-packed
hexagonal structure (a) and the close-packed cubic struc-
ture (b) of identical ions. In (a) the ions A are in the
interstices in a plane both above and below the plane
containing the ions B, thus forming the sequence vertical
ABAB etc. In (b) the ions A and C in the layers adjacent
to the B layer do not lie vertically above each other,
resulting in the vertical sequence ABCABC ezc.

triangles. On this layer can now be placed a new layer of identical ions,
shown in the diagram as A. These ions are also closely packed in a horizontal
plane. With a hexagonal close-packed structure there exists under the layer
with B ions another layer of ions whose centres lie vertically below those
of the ions in the 4 layer. Continuing in the vertical direction we thus obtain
in a hexagonal structure the sequence of layers ABABA and so on. It is
evident that this produces a uniaxial hexagonal crystal structure in which
the ¢ axis is perpendicular to the oxygen layers.

The cubic close-packed structure is represented in a corresponding manner
in Fig. 37.2b. The sequence of layers, proceeding vertically, is here 4 BCABCA
etc., where the ions 4 and B have positions similar to these in Figure a, and
where the ions C lie closely packed in one plane at the same distance below
the plane of the drawing as the A ions lie above it. This cubic close-packed
oxygen structure occurs in the spinels. Fig. 37.3 gives a perspective drawing
of the spinel structure, the [111] axis being set out vertically. The top and
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bottom ion layers are identical, also as regards their environment, so that
sufficient information is present for continuing the structure in the vertical
direction. The distance between two successive oxygen layers is approxima-
tely 2.30 A, and varies only in the third decimal place for the various metal
ions. Fig. 37.3b gives a cross-section through a mirror plane containing
the [111} axis. The vertical lines are axes of threefold symmetry. This
means that all ions not lying on one of these axes occur three times.

Fig. 37.3a Perspective re-
presentation of the spinel
structure with the [111]
axis vertical. The hatched
and black circles represent
ions on octahedral and tetra-
hedral sites respectively.

The ferromagnetic oxides to be discussed all consist of closely packed
oxygen ions. The structures are built up from sections having alternately
a cubic and a hexagonal structure. It is evident that in such a case the crystal
structure will again have hexagonal symmetry. In certain layers in these
substances some oxygen ions are replaced by barium ions, which are approxi-
mately of the same size as oxygen ions (see Table 37.I). For a complete des-
cription of the crystal structures the reader is referred to “Crystal Structures
of a New Group of Hexagonal Ferromagnetic Compounds” by Braun [Br 6].

37.3. THE MAGNETOPLUMBITE STRUCTURE M

The compound M, with a chemical composition BaFe;20;9, has a crystal
structure which, according to Adelskold [Ad 1], is equal to that of the min-
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S-= Meg Fe; Og
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Fig. 37.3b. Cross-section through a mirror plane of the spinel structure with the [111]
axis vertical, drawn for the ideal value of the parameter u. The vertical lines are axes
of threefold symmetry. All ions not lying on one of these axes occur three times, as
shown schematically by broken circles in the top layers. The small white and black circles
represent respectively ions on octahedral and tetrahedral sites. The arrows indicate the
relative orientation of the magnetic moments of the ions on these sites.
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Fig. 37.4. Cross-section of the magnetoplumbite structure M, with the ¢ axis vertical.
The arrows indicate the spin orientations. The drawn vertical lines are axes of three-
fold symmetry. A cross indicates a centre of symmetry. All layers containing barium
are mirror planes, and are denoted by m. This structure consists of the same § blocks
as in Fig. 37.3b separated by R blocks containing barium. The asterisk indicates a ro-
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¢ axis.
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eral magnetoplumbite, the composition of which is approximately PbFer.5
Mng, sAlg. sTip.sO10. The hexagonal elementary cell consists of 10 oxygen
layers. The length of the ¢ axis corresponding to this is 23.2A and that of
the a axis is 5.88 A. A schematic representation of the M structure is given
in Fig. 37.4. In an elementary cell each layer contains four large ions. There
are in four successive layers always four oxygen ions, but each fifth layer
contains three oxygen ions and one barium ion. The magnetoplumbite
structure can be built up from spinel blocks of two oxygen layers (Fig. 37.4),
being blocks S and S*, which are connected by a block R (for a perspective
drawing of this block see Fig. 37.5a) containing the barium ion. Blocks

CL

Fig. 37.5. Perspective drawings of the R block occurring in the M structure and the T
block occurring in the Y structure. The latter block contains two adjacent barium layers.

R* and S* are obtained from blocks R and S, respectively, by rotation over
180° around the ¢ axis. The layer containing barium is hexagonally packed
with respect to two oxygen layers at each side. The four oxygen layers
between those containing barium are cubically packed. There is an overlap
of cubically and hexagonally packed sections in the structure. The basal
plane containing the barium ion is a mirror plane of the R block, and
consequently the blocks preceding and succeeding the R block (S and S*)
must be rotated over 180° with respect to each other. This is also the
reason why the elementary cell of the M structure contains 10 and not 5
oxygen layers. In general it can be said that when one R block is passed
in a structure the following blocks must be rotated over 180° around the
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¢ axis. Only after a second R block is passed is the original situation found
again. The crystallographic structure can thus be described as RSR*S*, and
the elementary cell contains a number of ions corresponding to 2(BaFe;2019).
The unit S, then, contains two molecules MeFe204. It would be possible
to say that in the M structure the spinel block consists of two more
oxygen layers [Br 6], but the block then obtained would not contain the
metal and oxygen ions in the ratio 3 :4.

For the ferric ions there are three different kinds of interstitial sites present.
Along with octahedral and tetrahedral sites there exists a new type of inter-
stitial site which is not found with spinels and which is surrounded by five
oxygen ions constituting a triagonal bipyramid. These sites occur in the
same layer as the barium ion, and they can be compared with tetrahedral
sites. In the hexagonal structure two tetrahedral sites are adjacent to each
other, and for these two only one metal ion is available. This metal ion now
occupies a position halfway between them, amidst the three oxygen ions.
According to the ideal parameters the available space is extremely small.
This means that the three oxygen ions are certainly displaced outwards, as
it is also the case with the more spacious tetrahedral sites in the spinel lattice
(see § 31.2). In the R block two adjacent octahedral sites are occupied by
ferric ions. There are now, however, two ions available, so that in this
case there is no abnormal environment. The fact that it is not the other
way round, i.e. two tetrahedral sites occupied and one ion available for
the two octahedral sites together, is because an octahedral environment
is energetically more favourable than a tetrahedral one (higher coordination
number, compare with the situation in spinels). Moreover two ions in the
octahedral sites lie further apart than they would do if they had occupied
the two tetrahedral sites.

37.4. THE CRYSTAL STRUCTURE OF THE COMPOUND Y = Ba:MeaFe12022

The crystal structure, as determined by Braun [B1 6], of the compound Y,
chemical composition BazMezFe12022, is represented schematically in Fig.
37.6. The smallest elementary cell with hexagonal symmetry consists of
18 oxygen layers, the length of the ¢ axis being 43.56A. If, however, the
upright edges of the parallelepiped are not taken vertically but along the
oblique lines indicated in the figure, it is possible to find an elementary
cell, having rhombohedral symmetry, with a repeat distance extending
through only six oxygen layers. In the hexagonal elementary cell each layer
again contains four large ions. There are four successive layers of four oxygen
ions, followed by two layers each containing three oxygen ions and one
barium ion. The Y structure can be built up from spinel blocks of two oxygen
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layers: the blocks S in Fig. 37.3b, which are connected by a block T in
which there are now, one above the other, two layers with barium ions;
for a perspective drawing of the T block see Fig. 37.5b. The layers containing
barium are hexagonally packed with respect to their adjacent oxygen layers.
These barium ions are somewhat larger than the oxygen ions (see Table
37.I). Therefore the distance between the layers with barium ions is greater
than between the oxygen layers which contain no barium ions; the distances
are 2.40 and 2.32 A respectively. The projection of the distance between
the centres of the barium ions on to the ¢ axis is 2.90 A, from which it fol-
lows that the centres of the barium ions lie at a distance of 0.25 A out of the
plane of the nearest oxygen layer. The distance, too, between a layer with a
barium ion and the first following oxygen layer is slightly increased, namely
up to 2.35 A. In the Y structure, only tetrahedral and octahedral sites are
occupied by the metal ions. Per formula unit BagMesFe12022, four ions
occupy tetrahedral sites and ten octahedral sites. The T block might be re-
garded as a combination of the innermost layers of two R blocks from Fig.
37.5a. To the two octahedral ions lying one above the other a second pair
is added from the adjacent barium layer, of which two of the octahedral
ions coincide. In this way one obtains three octahedral ions one above the
other. The two sites surrounded by five anions are no longer occupied either,
because one of the tops of the adjacent tetrahedrons is now occupied by a
Ba ion. The metal ion is pushed towards the centre of the other oxygen
tetrahedron. The T block does not contain a mirror plane, so that now the
preceding and succeeding S blocks are not rotated with respect to each
other. The crystallographic build-up of the Y structure is thus represented
by TS. It may be noted that the chemical composition of the T block is given
by the hypothetical BaO.2FezO3 indicated in Fig. 37.1.

37.5. MIXED COMPOUNDS

Apart from the three structures discussed, S, M and Y, there also occur
on the sides M-Y and M-S of the triangle formed by these three points in
Fig. 37.1 a number of crystal structures whose elementary cells can be built
up from those of the compounds at the corners. The structure can again be
given by the stacking of R, S and T blocks. For all these compounds the
a axes are the same (= 5.88 A) and the ¢ axes are approximately additive.
The compounds listed in Table 37.II have been prepared and identified
by X-ray analysis. It is very remarkable that regularities of this order can
occur in the sequence of R, S and T blocks. The most important of these
compounds are denoted by the letters W and Z. By way of illustration the
cross-sections through mirror planes containing the ¢ axis of W and Z
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Fig. 37.7. Cross-section of the W structure with the ¢ axis vertical. The arrows indicate
the spin orientations. The drawn vertical lines are axes of threefold symmetry. A cross
indicates a centre of symmetry. The asterisk indicates a rotation of a block by 180°
about the c¢ axis. The structure can be thought to be the sum of the S and the M
structures (Figs. 37.3b and 37.4 respectively).
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Fig. 37.8. Cross-section of the Z structure with the ¢ axis vertical. The arrows indicate
the spin orientations. The drawn vertical lines are axes of threefold symmetry. A
cross indicates a centre of symmetry. The asterisk indicates a rotation of a block by
180° about the c axis. The structure can be thought to be the sum of the M and the Y

structure (Figs. 37.4 and 37.6 respectively).
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TABLE 37.11
FERROMAGNETIC OXIDES WITH HEXAGONAL CRYSTAL STRUCTURES
Numberof|
_pqytE
Chemical Sym- | Crystallographic layers per ¢ axis *) | Molecular| X ray‘ )
composition bol build-up hexagonal inA weight density
elemen- g/cm3
tary cell
BaFe12019 M RSR*S* 10 23.2 1112 5.28
Me:FeqOs S S —_ — 232 5.24
BasMezFe12022 Y (TS)s 3x6 3x14.5 1408 5.39
BaMesFei16027 | MS(W)| RS:R*Sg* 14 32.8 1575 5.31
BasMegFe2s046 | MS (RSR*S2%)3 3Ix12 3x28.0 2686 5.29
BasgMezFe24041 |MY(Z)! RSTSR*S*T*S* 22 52.3 2520 5.33
BajMegFe3s0s0 |M2Y | RSR*S*TS* 16 38.1 3622 5.31

are given in Figs. 37.7 and 37.8 respectively. For the metal ions Me about
the same variety of divalent ions can be taken as for the ferrites with spinel
structure. Which these are will be indicated by short notation, as for example:
Co2Z, Niy 5Zng.5W, ZnaY, etc. The molecular weights and X-ray densities
of the most important of these compounds are given in Table 37.1IL.

TABLE 37.1I1

X-RAY DENSITY dx AND MOLECULAR WEIGHT M OF SOME OXIDES WITH HEXAGONAL
CRYSTAL STRUCTURE.

W = BaMezaFei14027 Z = BasMegFe240 Y = BazMezFe12022
Me s M s M s M
g/cm3 g/cm3 g/cm3 .
Mg 5.10 1512 5.20 2457 5.14 1346
Mn 5.31 1573 5.33 2518 5.38 1406
Fe 5.31 1575 5.33 2520 5.39 1408
Co 5.31 1577 5.35 2522 5.40 1410
Ni 5.32 1580 5.35 2526 5.40 1414
Cu 5.36 1590 5.37 2536 5.45 1424
Zn 5.37 1594 5.37 2539 5.46 1428

37.6. IDENTIFICATION OF THE HEXAGONAL OXIDES

The materials are prepared by firing specific mixtures of oxides for a certain
time at a temperature ranging between 1200 and 1400 °C, so that a sintered
ceramic product is obtained. Their crystal structures are determined by X-ray

*) Independent of the type of Me ions in the approximation given here.
**) In the case where Me represents a ferrous ion. For the other compositions see Table
37.111.
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analysis. However, since the compounds M and W, for example, have a
closely related structure, small quantities of M, which can occur as by-
product in incomplete chemical reaction, are not easy to distinguish in the
X-ray powder diagrams from W. This difficulty can be circumvented in the
following way.

Many W compounds, like M compounds, are ferromagnetic with a pre-
ferred direction of magnetization parallel to the hexagonal axis (see § 39).
The crystallites in a powdered material will therefore orient themselves in a
magnetic field such that the hexagonal axis of each crystallite will be more or
less parallel to the lines of force. A few drops of a suspension of a powdered
specimen in a solution of a binder are now applied on a small glass plate,
and a strong magnetic field is applied perpendicularly to the glass plate,
When the binder is left to dry and afterwards the magnetic field switched off,
the crystallites are left with their hexagonal axes perpendicular to the surface
of the glass. In the X-ray diffraction diagram of such specimens, recorded
with a diffractometer *), the X-ray reflections from the planes perpendicular
to the hexagonal axis [ool], appear much intensified, whereas the other
reflections have almost vanished. This greatly simplifies the diagram; see
Fig. 37.9 (page 199). These simplified diagrams are characteristically different
for M and W, and this makes it easy to distinguish a small quantity of one of
these compounds from a large quantity of the other. Moreover, the powder
diagrams of the other hexagonal compounds, for example Y and Z, also
resemble those of M and W, so that with powder diagrams alone it is not
easy to ascertain in which composition of the oxide mixtures these com-
pounds occur in a pure state. In these cases, too, the method of alignment
in a magnetic field is employed, and here again one finds a characteristic
simplification of the X-ray diagrams. It appears from these diagrams of
aligned specimens (Fig. 37.10 [page 200]) that in most Z specimens the
hexagonal axis (c axis) is parallel to the magnetic field; thus, the spontaneous
magnetization of these compounds is also parallel to the ¢ axis. As is the
case with M and with many representative oxides of the W group, this axisisa
preferred direction. With all Y specimens, on the other hand, the hexagonal
axis lies perpendicular to the magnetic lines of force, the directions of the
other axes being arbitrary; this means that the spontaneous magnetization
of the Y compounds lies in a plane at right angles to the ¢ axis. The result is
that after a magnetic treatment as described above, only hko reflections
appear in the X-ray diagram.

*) In diffraction experiments with a diffractometer it is precisely such flat specimens that
are used. See [Pa 11.
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§ 38. Saturation Magnuetization

38.1. THE PREDOMINANT SUPEREXCHANGE INTERACTIONS IN THE
VARIOUS STRUCTURES

It is assumed that the relative orientation of the magnetic moments of the
ions in the S blocks of the hexagonal ferrites is the same as in the ferrites
with spinel structure. In each S block, then, there are four octahedral ions
and two tetrahedral ions with oppositely oriented magnetic moments; this
is indicated by arrows in Figs 37.3b, 37.4, 37.6, 37.7 and 37.8. To indicate
the predominant superexchange interactions in the interlying blocks R and
T, these blocks are again reproduced schematically in Fig. 38.1, but now
taking into account the correct parameters for the ions in the environment
of the layers containing barium. In the R block (occurring for example in
the half elementary cell of the M structure) the direction of the mag-
neticmoment of the ion 1 in the layer containing barium is chosen,
parallel to the c axis in an upward direction *). The starting premise is
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Fig. 38.1. Schematic representation of the predominant superexchange interactions in
the M and the Y structures. Each interaction is indicated by two connected heavy lines
with a dot included in the angle between them.

#) The direction of the magnetic moments with respect to the crystal lattice is dealt with
in § 39. We are only concerned with the mutual direction of the magnetic moments
of the ions.
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again that the superexchange interactions between the magnetic ions take
place via the intermediate oxygen ions, and it is assumed that this is again a
negative exchange interaction (number of d electrons > 5) see § 8.1. As for
the spinels (see § 32.1) Gorter estimates the magnitude of the exchange
interactions from the magnitude of the distances /= Me-O-Me and the
angles ¢ = MeOMe (see [We 2]). This leads to the assumption that the
magnetic moments of the metal jons 2 and 3, which lie closest to the layer
containing barium, are directed downwards. The reasonis that the 1-oxygen-2
interaction is large because the appertaining angle ¢ is large (approximately
140°), whereas the other interaction, the 2-oxygen-3 interaction, which
attempts to align the magnetic moments of these ions antiparallel, is smaller
because the appertaining angle is unfavourable (approximately 80°). More-
over, the distances from the ion to the three surrounding oxygen ions in the
basal plane is very small (1.3 A) and this promotes a high 1-oxygen-2 inter-
action. The coupling with the S block is brought about by the interaction
between the magnetic moments of the octahedral ions 3 and 4. Interaction
between octahedral ions also occurs in the spinel structure (its magnitude is
indicated by the quantity B, see § 33), but there it is relatively small owing
to the unfavourable angle (90°). The distances here to the oxygen ions are
the same, but because of the different oxygen stacking in the R block, the
angle is now larger (130°). This is the most important interaction between
the R and the S blocks. The interaction between the ions 1 and 4 opposes
the drawn spin configuration. This interaction will be small because of the
considerable distance between ion 1 and the oxygen ion vertically above
it (2.3 A). From the fact that the Curie point of the M compound is high
(450 °C) it may be deduced that the octahedral-octahedral interaction will
increase sharply with increasing angle.

In the case of the T block (occurring, for instance, in the elementary cell
of the Y structure, (see Fig. 37.6) the starting point [Go 7] is the octahedral
ion 2 which lies between the two layers containing barium. If the magnetic
moment of this ion is oriented perpendicularly to the ¢ axis towards the
right, the magnetic moment of the tetrahedral ion 1 will be oriented to the
left. In the R block the 1-oxygen-3 interaction was equal to the 1-oxygen-2
interaction. This is not the case now because the ion is displaced in such a
way that the angle 1-oxygen-2 is larger than the angle 1-oxygen-3. More-
over, according to Braun [Br 6], the ion 3 is shifted upwards, so that the
distance from this ion to the oxygen ions in the layer containing barium
has become relatively large (2.33 A), and this reduces the 1-oxygen-3 inter-
action (now comparable to the 1-oxygen-4 interaction in the R block).
The 1-oxygen-4 interaction is now important and is of the tetrahedral-
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octahedral type occurring in the spinel lattice. The magnetic moment of the
jon 3 is now oriented in accordance with the 3-oxygen-4 interaction, which
was also important in the R structure, and in this case would probably be
even stronger since the ion 3 is closer to the oxygen ion between ions 3 and 4.
As a result, the moment of ion 3 is now antiparallel to that of ion 2. Conse-
quently the T block contains as many ions (4) pointing to the right as point-
ing to the left, and therefore, if all these ions are of the same kind, there will
be no net resultant moment. The T block may then be called “antiferrimag-
netic”. It is found experimentally, in agreement with the above, that the
saturation magnetization of the Y crystals is relatively low, being about
half that of ferrimagnetic spinels. A survey of the relative directions of the
magnetic moments of the metal ions in the various blocks is given in Table
38.L

TABLE 38.1

NUMBER OF METAL JONS ON THE VARIOUS SITES IN THE BLOCKS R, S AND T. THE RELATIVE
DIRECTION OF THEIR MAGNETIC MOMENTS IS INDICATED BY ARROWS.

Tetrahedral ions Octahedral ions Ions with
Block (surrounded by 4 {surrounded by 6 fivefold
oxygen ions) oxygen ions) coordination
R — 3 $ 2 ¢ 1@
S 2 * 4 $ —
T 2 * 4§ 2 ¢ —

38.2. SATURATION MAGNETIZATION OF COMPOUNDS WITH M STRUC-
TURE

The resultant magnetic moment per formula unit BaFe12019 is equal to the
sum of the moments of the seven octahedral ions and the ion in the layer
containing barium, reduced by the moments of two octahedral and two
tetrahedral ions, which are oppositely oriented to them; this is schematically
indicated by arrows in Fig. 37.4. In the case of BaFe1201, all magnetic
jons have a magnetic moment of 5 Bohr magnetons, so that the magpetiza-
tion per formula unit is equal to (1 +7—2—2)xX5= 20 Bohr magne-
tons. Measurements on polycrystalline BaFe12019 at liquid hydrogen tem-
perature and in fields up to 26,000 oersteds result in exactly this value ISt 1).

In Fig. 38.2 the saturation magnetization is given as a function of tem-
perature for BaFe12019 (corresponding to 8 = 0 in the figure). The satura-
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Fig. 38.2. Saturation magnetization as a function of temperature for a number of com-
pounds with the magnetoplumbite structure M.

tion magnetization decreases approximately linearly with temperature in
a wide temperature range. At T = 20 °C onc finds o = 72 gauss cm3/g,
corresponding to 4wMs = 4775 gauss. The Curie point is 450 °C. Some
information is available on how the saturation magnetization is affected
by the substitution of other ions in the M structure [Ca 2]. The curves in
Fig. 38.2 give the saturation magnetization for the case where some of the
ferric jons are replaced by a combination of Co! and TilV jons according
to the formula BaCo,UTi,/VFe12-2:019. The measurements were carried
out on polycrystalline specimens at the relatively low field strength of 6600
oersteds. It can be seen that both the Curie point and the saturation magneti-
zation at low temperature decrease rapidly with increasing 8. From measure-
ments at liquid hydrogen temperature and in magnetic fields up to 25,000
oersteds a saturation magnetization has been found of approximately 14
and 12 Bohr magnetons per formula unit for values of 8 equal to 1.2 and
1.4 respectively.

38.3. SATURATION MAGNETIZATION OF COMPOUNDS WITH W
STRUCTURE

In Fig. 38.3 the saturation magnetization o per gram for a number of simple
and mixed W compounds is plotted as a function of temperature. In the
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case of these W compounds, too, almost straight lines are found over a large
temperature range, as had already been found for the compound BaFe12019
with M structure. It appears from the figure that the substitution of zinc
gives the highest saturation magnetization at low temperature; evidently
in this case, just as with spinels, the zinc ion occupies tetrahedral sites and
consequently lowers the average moment of the ions on these sites. Table
38.11 gives the saturation magnetization at room temperature, oz, and the
Curie points T¢ of a number of W compounds.

120
o 1O AT MeaW
(gauss cm-’/y)_\‘ ~+‘ N 2
80 SN X\ X
T FSISNONN | Nigs ZngsFeT
50 N %
Fe | NOSEN\| Mn2
40 ¥ N
NiFeZ N
20 \\
A
%520 0 200 400 500
—»T (oc)

Fig. 38.3. Saturation magnetization as a function of temperature for a
number of compounds with W structure, measured on polycrystal-
line specimens at a field strength of 6600 oersteds.

TABLE 38.11
SATURATION MAGNETIZATIONS AT 20 °C AND CURIE POINTS Tc OF Me;W COMPOUNDS.
Mes 020 4 M, Tc
gauss cm3/g gauss °C
Mng 59 3900 415
Feoll 78 5220 455
NiFell 52 3450 520
ZnFell 73 4800 430
Nig,5Znp,sFell 68 4550 450

By extrapolation to the absolute zero point of the o versus T curves in
Fig. 38.3 an approximate value of oo at 0 °K can be estimated. This value is
given in Table 38.1I1, together with the derived number of Bohr magnetons
(ng)W per molecule Me:W. From the way in which the W structure is built
up from double spinel blocks S and blocks R, it follows that the saturation
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magnetization of a W compound should be simply related to the saturation
magnetization of BaFej2019 (denoted by (ns)m) and the corresponding
spinel compound Me:S (denoted by (nz)s); that is:

[(nB)W.] theor = (nB)M + 2(nB)s (38.1)

The values of the saturation magnetizations of the W compounds shown
in the last column of Table 38.1II are calculated from (38.1) assuming that
(nB)m = 20 and that the values from Table 32.II are applicable for (n5)s.
The measured values are found to be in reasonably good agreesment with the
expected values. Deviations can be due to the fact that the Me ions also
occupy sites in the R block, and they are certainly also partly due to the
small fields with which the measurement was carried out, viz. about 6600
oersteds. For the compound Fe;W, the values are given in the table hold
for a measuring field of 25.000 oersteds.

TABLE 38.111

SATURATION MAGNETIZATION ¢; OF Me;W COMPOUNDS AT THE ABSOLUTE ZERO POINT,
AND A COMPARISON OF THESE VALUES WITH THOSE OF THE COMPOUNDS M AND S ACCORD-

ING TO (38.1), ASSUMING (zp)M = 20.

Me:W a0 (nB)y, (nm)g [(nB)w] theor =
M ss em® experi- from 2042
e gaussCcmllg | entally | Table 32.I1 z)g
Mng 97 27.4 4.6 29.2
Feall 98 27.4 4.0 28
NiFell 79 22.3 3.2 26.4
ZnFelr 108 30.7 5.8 31.6
Nio.sZng.sFe!! 104 29.5 4.6 29.2

38.4. SATURATION MAGNETIZATION OF COMPOUNDS WITH Y
STRUCTURE

Fig. 38.4 gives the saturation magnetization of a number of simple Y com-
pounds as a function of temperature. In Table 38.1V a survey is given of the
saturation magnetizations at room temperature and the Curie points of
these Y compounds. It was seen in § 38.1 that the T block contains an equal
number of oppositely oriented magnetic moments. If, then, we were to
assume, as in the case of the W structure in § 38.3, that the Me ions are
contained only in the spinel block, the magnetic moment would result from
this block alone. The corresponding values of np are given in the last column
of Table 38.V and compared with the measured values, as found from the o
versus T curves by extrapolation to T = 0. In this case the measured values
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TABLE 38.IV

SATURATION MAGNETIZATIONS AT 20 °C AND THE CURIE POINTS OF SOME SIMPLE Me,Y
COMPQUNDS.

MeY 020 47 M, T¢
Me gauss cm3/g gauss °C
Mn 31 2100 290
Co 34 2300 340
Ni 24 1600 390
Zn 42 2850 130
Mg 23 1500 280

TABLE 38.V

THE SATURATION MAGNETIZATION ¢o OF COMPOUNDS Me,;Y AT THE ABSOLUTE ZERO. THE
NUMBER OF BOHR MAGNETONS (ng)Y PER UNIT CELL IS COMPARED WITH THE VALUE (pg)S
OF THE CORRESPONDING FERRITES WITH SPINEL STRUCTURE.,

Me2Y oo 2(np)g
Me gauss cm?/g (r2)y from Table 32.1I1
Mn 2 10.6 9.2
Co 39 9.8 7.4
Ni 25 6.3 4.6
Cu 28 7.1 2.6
Mg 29 6.9 2.2
Zn 72 18.4 @0
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Fig. 38.4. Saturation magnetization as a function of temperature for a
number of compounds with Y structure, measured on polycrystalline
specimens at a fieldstrength of 11000 oersteds.
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are seen to be somewhat higher than those of the spinel block, contrary to
what is found in the case of W. This gives no cause to doubt the correctness
of the spin configuration of the T block as postulated in § 38.1, since any
deviation from this would result in much greater deviations in the number
of Bohr magnetons. For example, if in Fig. 38.15 the spin moments of the
ions 3 in the Y structure were to be reversed, this would give a resultant
moment corresponding to ns = 4 for each T block, which would have to
be added to that of the S block, and therefore oo would increase by a factor
of three. It must rather be assumed that the divalent Me ions are also con-
tained in the T block. If the cobalt or nickel ions, which have a moment
lower than that of the ferric ions, also occupy the sites 3 in the T block of
Fig. 38.15, the result is an increase in the magnetization. To explain the
moment of the Co2Y compound, still assuming the moment of the cobalt
ion to be 3.7 ug, then of the two Co ions 1.2 jons must occupy the sites 3
in Fig. 38.1b. For the nickel ferrite this figure would be only 0.3.

The case of the ZnsY compound is particularly interesting, because one
must assume that the zinc ions in the Y structure too must occupy tetra-
hedral sites, the moments of which are all parallel. It is evident that the zinc
tons cannot all be contained in the spinel block, because otherwise the block
would become antiferromagnetic or paramagnetic. The lowering of the
resultant moment in spinels with high Zn content is caused by the formation
of angles between the moments of the octahedral ions (see § 32.1). This is
due to the negative exchange interaction between the moments of these ions.
The measured value of the saturation magnetization suggests that this angle
formation, without which ng would be equal to 20, is less pronounced in
the Y structure. This is clear for the following reasons. The moments of the
octahedral ions 2 and 3 in Fig. 38.16 are already antiparallel, so that the
interaction 2-3 favours this orientation. The same holds for ions 3 and 4.
Moreover, since each ion 3 interacts with six ions 4, and since the 3-4 inter-
action is strong, this will have the effect of favouring the parallel orientation
of the moments of all ions 4. A further result of this is that the angle for-
mation between the moments of the octahedral ions in the S block will be
opposed.

38.5. SATURATION MAGNETIZATION OF COMPOUNDS WITH Z
STRUCTURE

In Fig. 38.5 the saturation magnetization is plotted as a function of tempera-
ture for polycrystalline specimens of MesZ. Table 38.VI gives their Curie
points and the saturation magnetization at 20 °C.
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Fig. 38.5. Saturation magnetization as a function of temperature for
compounds. with Z structure, measured on polycrystalline specimens
at a fieldstrength of 11000 oersteds for CoeZ and Zn2Z and of

18000 oersteds for CusZ.

TABLE 38.VI
THE CURIE POINT AND THE MAGNETIZATION OF SOME COMPOUNDS Me;Z AT T =20 °C.
MeZ 020 4nM, TC
Me gauss cm3/g gauss °C
Co 50 3350 410
Cu 46 3100 440
Zn 58 3900 360

Since the Z structure can be considered crystallographically as a super-
position of the structures M and Y, the experimentally found values for the
saturation magnetization per unit cell of substances with Z structure is
compared in Table 38.VII with the sum of those found for the M structure
and the corresponding Y structure. The value np = 20 is taken for

TABLE 38.VI

THE SATURATION MAGNETIZATION oy OF COMPOUNDS Me;Z AT THE ABSOLUTE ZERO POINT.
THE NUMBER OF BOHR MAGNETONS (np)Z PER UNIT CELL IS COMPARED WITH THE SUM
OF THESE OF THE M COMPOUND, (zg)M = 20, AND THE CORRESPONDING Y COMPOUND,
(np)y. THE LATTER VALUES HAVE BEEN TAKEN FROM TABLE 38.V.

MesZ o (nn)g, [8)z)neor =
Me gauss cm3/g experimentally 20 -+ (nB)y
Co 69 31.2 29.8
Ni 54 24.6 26.1
Cu 60 27.2 27.1
Mg 55 24 26.9
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M, and the values for Y are obtained from Table 38.5. Deviations can
occur owing to the Me ions also occupying sites in the R blocks of the M
structure, as in the case of the W structure.

§ 39. Crystal Anisotropy
39.1. BINDING OF THE MAGNETIZATION TO THE c AXIS

The crystal anisotropy of hexagonal crystals can be described with (11.6),
where the values of the coefficients K; and K» determine the direction of the
magnetization as indicated in Fig. 11.2. The sign of the anisotropy can easily
be determined by the method described in § 37.6, that is by aligning powdered
particles of the compound in a magnetic field and then determining their
orientation by X-ray diffraction. The magnitude of the crystal anisotropy
energy can be found by measuring the magnetization of a single crystal as
a function of the field in both the direction of the hexagonal axis and at
right-angles thereto. Results of measurements on BaFe;209, Co2Y and
CozZ are given in Figs. 39.1, 39.2 and 39.3 respectively. At room tem-

Y iauiins s
) 77.4°K
5000 20.4°K
BaFer209 /

éM
(gauss) % T

T 4000 / // 290.7 °K

/
2000 7
/
0 /
0 5 10 5 20 25 30

s H (10° O6)
Fig. 39.1. Magnetization curves for a single crystal of BaFe;2019 as
a function of an applied field perpendicular to the ¢ axis at different
temperatures, after [Stl].

perature the compound BaFe1201 can be saturated with a relatively small
field parallel to the ¢ axis, and the compounds CozY and Co,Z with a rela-
tively small field perpendicular to the ¢ axis. The magnetization curves in
the difficult direction of magnetization are almost straight lines, from which
it would follow that at room temperature all higher order anisotropy con-
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Fig. 39.2. Magnetization curves for a single crystal of CosY
as a function of an applied field along the ¢ axis at different

temperatures, after [Ca2].

stants are small compared to Kj. As stated in § 26.1, the magnetization curve
in the difficult direction will differ from a straight line if K> 7 0. This case
is found below room temperature for ferrites containing cobalt [Ca 2].

Anisotropy constants of hexagonal oxides have also been measured by
the torsion pendulum method described in § 26.3. From the description of
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Fig. 39.3. Magnetization curves of a

single crystal of CosZ as a function of

an applied field both parallel and per- 0
pendicular to the ¢ axis at room tem-
perature.
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the method it follows that where the c axis is a preferred direction of mag-
netization the quantity Ki from (11.6) will be measured, whereas in the case
of a preferred plane the combination K1 + 2K; is measured. Measurements
have been carried out on single crystals and on specimens consisting of
crystals whose ¢ axes were, to a fairly high degree, in parallel alignment
(for the preparation of these specimens see § 44). Table 39.1 gives values
found at room temperature for the anisotropy constants together with the
anisotropy field strength Hy defined by (11.7). For BaFe120;9 the value
of K; was also determined by ferromagnetic resonance measurements
[Sm 2], the results being the same as found by direct (static) magnetic
measurement.

TABLE 39.1

ANOSOTROPY CONSTANTS K; OR K; + 2K;, SATURATION MAGNETIZATION Mz AND ANISO-
TROPY FIELD H. g OF SOME HEXAGONAL OXIDES AT 20 °C.

K1 K1 +2K2 M. A

Compound Symbol 108 108 i 6
gauss | oersted

erg/cm3 | erg/cm3

*) BaFe 13019 [We 1] M +3.3 380 17,000
*) BaFe;3027 [We 1] FeasW +3.0 314 19,000
BaZnFe;70327 FeZnW +2.4 380 12,500
BaZn;.sFei7.5027 Feo.5Zn1.5W +2.1 380 11,100
BaMnFe14027 MnZnW +1.9 370 10,200
BaNisFe;5027 Ni:W +2.1 330 12,700
BaNig.sZnFe16.5027 Feo.5Nip.sZnW +1.6 350 9,100
BaCoo.75Zno.75F€16.5027 | Feo.5C00.75Zn0,75W —0.4 360 2,200
Ba:MgaFe12022 Mg2Y —0.6 119 10,000
BasNizFe12022 Ni2Y —0.9 127 14,000
BasZnaFe12022 Zn2Y —1.0 227 9,000
¥) BaaZn;.5Fe12.5022 Feo.sZn;.sY —0.9 191 9,500
*) BagCozFe12022 CozY —2.6 185 28,000
*) BasCozFe24041 CosZ —1.8 270 13,000

*) Measurements on single crystals.

Fig. 39.4 shows the saturation magnetization 47Mj;, the anisotropy field
Hj and the crystal anisotropy constant K1 for BaFe;2019 as a function of
temperature. The same quantities for Co2Y are given in Fig. 39.5. For this
ferrite [Ca 2] a remarkable decrease in the anisotropy occurs near 215 °K.
The anisotropy field becomes here almost zero: what remains is perhaps
due to inhomogeneities of the crystal. For temperatures below 215 °K the
ferrite CosY has a preferred cone for the magnetization with the ¢ axis
as the axis of the cone (see § 11.1). The top angle 8o of the cone is represented
as a function of temperature in Fig. 39.6. Above 215 °K the basal plane of
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Fig. 39.4. Saturation magnetization Mo, crystal anisotropy K1 and
anisotropy field Hg of BaFe1201¢ as a function of temperature.

the hexagonal structure is a preferred plane of magnetization. The mag-
netization curves for various directions of the crystal also show a trend
which is characteristic of a preferred cone of the magnetization. At 77 °K
there is already a magnetization in the direction of the ¢ axis for a field
strength H = 0, (see Fig. 39.2).

As shown in Fig. 39.7 the compound Co2Z represents the remarkable
case of having three types of crystal anisotropy [Ca 2]. Above 480 °K the
c axis is a preferred direction, between 220 °K and 480 °K the basal plane
is a preferred plane and below 220 °K the material exhibits a preferred
cone for the magnetization.

Mixed hexagonal ferrites can be made which, at a specific temperature, pos-
sess an anisotropy that is found to lie between the extremes of BaFe;12019 and
Co:Y. Anexample is the series of mixed crystals of the compounds Co,Zns—,Z
The anisotropy constants at room temperature are given in Fig. 39.8 as a
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tanction of the composition parameter 8. The compounds at the ends of
the diagram, Zn,Z and CosZ, have respectively a preferred direction and a
preferred plane for the spontaneous magnetization. For the mixed crystals
a gradual transition is found as a function of 8 from the one kind of ani-
sotropy to the other.

K 3
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N
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Fig. 39.9. Crystal anisotropy Ki of \\
several titanium-substituted compounds 0 ~
with M structure as a function of the N}\&
titanium (or divalent metal ion) B
content. Ki+2Kz 0 05 10 15

In the compound M, divalent ions can also be introduced, together
with the same number of tetravalent ions. An example of the effect on
the crystal anisotropy is given in Fig. 39.9. It appears that relatively small
quantities of TilV and Me!! ions can considerably reduce the crystal aniso-
tropy. In the case where Me represents the nickel or zinc ion the ¢ axis
remains a preferred direction. In the case where Me = Co the compounds
BaCo,Ti,Feiz2-2 6019 with 8§ > 1.1 have a preferred plane of magnetization.

39.2. ANISOTROPY IN THE BASAL PLANE

Where the spontaneous magnetization lies in the basal plane of the crystal
with hexagonal structure, the anisotropy energy in the basal plane is deter-
mined by the magnitude of K3 from equation (11.6). It appears that K3 is
smaller than X; by at least a factor of the order of magnitude 103. In Fig.
39.10a the stiffness ¢ is plotted for a single crystal of Coy.92Fely osZ as a
function of the angle ¢ which a fixed direction in the preferred plane of the
crystal platelet makes with the direction of the field, the stiffness ¢ being
given by an equation analogous to (26.3):
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The Fourier analysis of the curve
3000 ) in Fig. 39.10a gives the spectrum
c=Xchsin{n . . .
shown in Fig. 39.10b. The sixth har-
monic component has a strikingly
2000 high amplitude; this component cor-
]& responds to the term K in (11.6),
and is equal to 120 erg/cm3. The
l \ appearance of the second harmonic
1000 is due to the fact that the crystal
I platelet is not exactly parallel to the
direction of the lines of force of the
1 y Y: 3 homogeneous magnetic field. Con-
o2t 5 5 —m 12 sequently a very small part of the

Hp—>"

Fig. 39.10b. The Fourier spectrum
of the stiffness data of Fig. 37.10a.

large anisotropy K is also measu-
red. Table 39.II gives some values
of Ks
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TABLE 39.11

THE CRYSTAL ANISOTROPY CONSTANT K3 AND THE ANISOTROPY FIELD Hg FOR SOME HEXA-
GONAL FERROMAGNETIC OXIDES.

A
Material Temperature M; K3 H P

°C gauss erg/cm3 oersted
—196 210 2000 340
CozY 20 187 800 155
170 145 150 37
- { 20 280 55 7
CovsFeT0sZ ( 158 220 ~9 ~
Coy.92Feg 0sZ 20 280 120 16
CoZno.sFe™o.5Z 20 290 25 3
Zny sFey5Y 20 190 <6 <1

measured on various crystals at different temperatures, together with the
corresponding anisotropy field Hj = 36 K3/M,. It is seen that K3 is larger
the greater is the cobalt content in the material; for Zn; sFeo sY a value
of K3 which may possibly be present falls within the measuring error. The
compound Co2Y contains relatively the most cobalt and has by far the
largest K3. The anisotropy field strengths H4 are small compared with the
field strength of approximately 3000 oersteds at which the measurement is
carried out, so that in these cases no great error is made if the extrapolation
to an infinitely large measuring field is omitted.

'39.3. ORIGIN OF CRYSTAL ANISOTROPY IN HEXAGONAL OXIDES

In hexagonal crystals the characteristic dipole-dipole interaction can in
principle give rise to" uniaxial anisotropy (see § 12.1), in which case only
K1 # 0. The spin configuration in the Y structure favours the occurrence
of a preferred plane. A complete calculation of the dipole sums has been
made [Ca 2] and yields:

(KDaip = —(0.044 12, + 0.0006 o o + 0.240 p2).108 erg/em3, (39.2)

where py and po are the averaged magnetic moments, expressed in Bohr
magnetons, of the tetrahedral and octahedral ions respectively. Equation
(39.2) yields values ranging from —5 to —7x 108 erg/cm3 for the various Y
compounds (at T = 0 °K), so that it is probable that the negative crystal
anisotropy of compounds with the Y structure is caused by the magnetic
dipole-dipole energy.

In the M structure, on the other hand, it is not to be expected that the
dipole-dipole energy will be at all substantial. It is true that the two ions
one above the other in the R block (see Fig. 37.4) are parallel, and this
makes a positive contribution to Kj of about 1 x 108 erg/cm3, but the nega-
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tive contribution of the ions on the boundary plane of an R and S block
still remains. The calculation reveals indeed that the resultant contribu-
tion to K is negative (—1.5x 10% erg/cm?) and therefore cannot explain
the observed positive value of Ki of about 4.5x 108 erg/cm? at T = 0 °K.
It is possible that spin-orbit interaction may yet be able to explain the
anisotropy observed. In this case it would have to be spin-orbit interaction
in an excited state. Presumably Kp is small because in this case the simple
theory of § 12.2, which states that it should differ by a factor (A/4E)?,
is applicable here, inasmuch no fluctuations in 4E occur.

The anisotropy caused by the cobalt ions is probably of the same kind
as that appearing in magnetic annealing. The sign of the anisotropy energy
was not apparent in these experiments. In the hexagonal oxides the sign
of the anisotropy will depend on the sites which are occupied by the cobalt
ions, but which are not precisely known. In § 34.2 we saw that the uniaxial
anisotropy per cobalt ion is of the order of 50 cm~!. From Table 39.I it
follows that the contribution of cobalt in the Y structure is about 2x 108
erg/cm3, corresponding to approximately 3 cm~! per cobalt ion. It appears
that the distribution over the available sites is such as to give rise to consi-
derable cancelling of the anisotropy. In the W structure, the contribution
of each cobalt ion is roughly twice as large.

In ferrites with spinel structure the cubic crystal anisotropy is positive
for cobalt ions, that is to say the [111] direction is an abhorred direction.
In the hexagonal structure this direction is equivalent to the ¢ axis, which is
also an abhorred direction for the spins of the cobalt ions. These facts,
however, are not directly connected, since the cubic K corresponds to the
hexagonal K3. Thus, if the same mechanism is effective for the anisotropy
energy of the cobalt ions in the cubic and in the hexagonal crystals, one
would expect K? in hexagonal crystals containing cobalt to be positive. This
agrees with the experimental finding in Co.Y and in Co2Z at low tempera-
tures, (see § 39.1) and is then the cause of the occurrence of a preferred
cone for the magnetization vector.



CHAPTER X

INTRINSIC PROPERTIES OF FERRITES
WITH GARNET STRUCTURE

§ 40. Chemical Composition and Crystal Structure

Yoder and Keith [Yo 2] showed in 1951 that substitutions can be made
in the ideal mineral garnet Mn3Al,SizO12. By substituting YT AT
for MnII 4 SilV they obtained the first silicon-free garnet Y3Al;012. In
1956 Bertaut and Forret [Be 6] reported the preparation and magnetic
properties of Y3Fes0i2, and Geller and Gilleo [Ge 2] prepared and investigated
GdsFes5012, which compound is also ferromagnetic. It appeared [Be 6] that
the yttrium ion could be replaced by the rare-earth ions Pm, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, or Lu, owing to their nearly equal ionic radius.
There are no other trivalent ions known with about the same ionic radius.

The crystal structure is quite complicated. The iron ions, having the smal-
lest radii, all occupy tetrahedral (Fes) and octahedral (Fesz) sites just as in
the spinel structure, although they are somewhat distorted. According to
Geller and Gilleo [Ge 3] the tetrahedral-oxygen distance in yttrium garnet
is 1.88 A and the octahedral-oxygen distance is 2,00 A, which is about the
same as in the spinel structure. Nevertheless the aluminium ions now pre-
ferentially occupy tetrahedral sites, whereas they occupy preferentially
octahedral sites in the spinel structure [Ge 2]. A difference compared with
the spinel structure is also that all existing octahedral and tetrahedral sites
occurring in the garnet structure are occupied by the metal ions. Perhaps
this fact contributes to the very great stability of the structure. The yttrium
or rare-earth ions are too large to occupy tetrahedral and octahedral sites,
which are in 4-fold and 6-fold coordination respectively, but are, on the
other hand, too small to be substituted for an oxygen ion, each of which
is surrounded by 12 oxygen ions. The close-packed structure of the oxygen
ions is therefore not retained, but the yttrium or rare-earth ions occupy
sites which are rather irregularly surrounded by eight oxygen ions of which
four are at a distance of 2.37 A and four at 2.43 A. The edges of the cubic
unit cell, which contains 8 molecules Y3Fe;O;2, are 12.37 A. The X-ray
density of e.g. Y3FesO12 is 5.17 g/em3.

§ 41. Saturation Magnetization

The iron ions on the octahedral and tetrahedral sites are coupled antiferro-
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magnetically by the superexchange mechanism as in the other ferrites.
In this case the resultant magnetic moment of the iron ions is due to the
ions in tetrahedral coordination. The rare-earth ions, which have a magnetic
moment, are coupled antiferromagnetically to the net moment of the iron
ions. This coupling usually is much weaker than that between the iron ions.
As a consequence the magnetization of the rare-earth ions drops very quickly
withincreasing temperature, approximately as 1/7. Because most of these ions
have a saturation moment which is much larger than the resultant magnetic
moment of the iron ions, (Table 41.I) the moment of the rare-earth ions pre-
dominates at low temperatures and that of the iron ions at temperatures near
the Curie temperature. Therefore a compensation point of the magnetization
is observed (Fig. 41.1), as in the case of LiCr ferrite (see § 9.1). The intrinsic
susceptibility, observed in high fields, is very high in these ferrites at not too
low temperatures and is caused by the unsaturated magnetization of the rare-
earth ions. The Curie point is determined by the superexchange interactions
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Fig. 41.1. Spontaneous magnetization of a number of rare-earth iron garnets and yttrium-
iron garnet, expressed in number of Bohr magnetons as a function of temperature, after
Bertaut [Be 7]).
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between the iron ions and is almost the same for all rare-earth garnets
(560 °K). The magnetic moments of the rare-earth ions is between that of
pure spin and that of spin and orbit together, owing to partial quenching
of the orbital angular momentum. This quenching is less complete than in
the ions of the iron group because the partly filled 4f shell is not the outer
filled shell of the ion, the 55 and 5p shells being are occupied. The crystalline
fields, which should cause such quenching, are therefore more screened off.

The curve representing the reciprocal value of the susceptibility as a
function of temperature above the Curie point is hyperbolic, as should
hold for a ferrimagnetic substance. Aleonard et al. [Al 1] have determined
for Y3Fe;0;12 from the 1/y curve the molecular field constants n, o and 8
where na represents the molecular field constant within the octahedral sub-
lattice and nB that within the sublattice containing the iron ions on tetra-
hedral sites. The calculated values of a and B are 0.474 and 0.284 respectively.
This corresponds to fairly strong interactions between the spin magnetic
moments of the ions on equivalent lattice sites. The distance between the
ions is, however, rather large (5.4 A) and moreover a superexchange inter-
action via one oxygen ion is scarcely possible. The interaction has to take
place via at least two oxygen ions, and should therefore be very small. It is
accordingly very likely, as in the case of the spinels (§ 33), that the large values
of a and 8 are erroneous, and are due to the fact that the molecular field
theory does not strictly apply. It was shown in § 33 thatin particular this gives
rise to excessive values of the interaction constants inside the sublattice with
the smallest magnetization. In the present case this is the interaction between
theions on the octahedral sites (here «), in agreement with the observed values.

§ 42. Crystal Anisotropy and Ferromagnetic Resonance Properties

The great interest of ferrites with garnet structure, and chiefly of yttrium
garnet, resides in the small ferromagnetic resonance line width. The smallest
line width on carefully polished spheres reported so far is 0.6 oersted [Le 2]
at 3 cm wavelength at room temperature. This is presumably due, referring
to the theory of Clogston ez al. [CI 1], to the fact that only trivalent magnetic
ions of one kind occur, having no orbital angular momentum, so that no
fluctuating perturbing fields are present. The high value of the resistivity also
arises from this fact. The saturation magnetization at room temperature is
rather low (47 M, = 1700 gauss) so that losses due to incomplete saturation
do not occur at microwave frequencies. The garnets containing rare-earth
ions invariably have broad resonance lines, and are therefore not very
interesting from a technical point of view.
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The crystal anisotropy of yttrium garnet is rather low at room tem-
perature, —K;/M,; = 40 Oe, as has been measured by Dillon [Di 3] and
can be quite well described with a single constant Kj. Below 100 °K the
anisotropy strongly increases and varies approximately as 1/T. At still
lower temperatures, below 10 °K, the situation becomes quite complex,
anisotropy fields of the order of 3000 oersteds occur and the preferred direc-
tion is no longer along one of the simple crystallographic directions, so that
anisotropy constants of higher order are necessary to describe such a be-
haviour. This is contrary to what one should expect from the simple
theory developed, because the g factor is very close to 2, and therefore the
anisotropy ought to be small and a power series expansion of the energy in
the direction cosines should converge very rapidly. Moreover, since only
one type of magnetic ion is present, there are no fluctuations which should
tend to make higher terms important.

TABLE 41.1
ELECTRONIC STRUCTURE AND ANGULAR MOMENTUM OF YTTRIUM AND RARE-EARTH IONS.
Y Nd Pm Sm Eu Gd
At. el. conf. 4552 411652 4f5652 416652 417652 4f75d6s?
Ion el. conf. | 4p® Afs 454 4fs 4fe af7
S 0 3/2 2 5/2 3 /2
L 0 —6 —6 —5 —3 0
L 4 28 0 —3 -2 0 3 7
Tb Dy Ho Er Tm Yb Lu

At.el. codf. | 4f75d6s2| 4f106s2 | 4f11652 | 4f1265% | 413652 | 4f146s2 | 4f14546s2

Ion el. conf. | 4f8 40 4f10 41 4f12 413 | 4f14
s 3 512 2 32 1 12 0
L 3 5 6 6 5 3 0

L+2s 9 15 10 9 7 4 0



CHAPTER XI

STRUCTURE OF POLYCRYSTALLINE
FERRITES

§ 43. Isotropic Samples
43.1. PREPARATION

Polycrystalline samples of ferrites are prepared by a sintering proces as
commonly used in the ceramic industry. Broadly speaking this process
comprises the following operations. The metal oxides, carbonates or other
compounds which are to form the ferrite by a solid state reaction are mixed
homogeneously and wet-milled, usually in a steel ball mill. The dried powder
which may or may not have been pressed into a particular shape, is prefired
at a temperature of about 1000 °C in order to bring about the initial chem-
ical reaction between the constituents. In order to produce a chemically
homogeneous sample, the prefired powder is again intensively milled and
mixed. This powder, after the addition of a binder, is pressed into the re-
quired shape, or is extruded as a plastic mass in the form of tubes or rods.
The pressed or extruded products are sintered at a temperature between
1200 and 1400 °C, the precise temperature depending upon the proper-
ties of the ferrite that are wanted, (see for example [Sn 3] and [Ec 1]).
During this sintering process, a shrinkage of up to approximately 209, can
occur, a fact which has to be taken into account when dimensioning the
press mould. In the final sintering process the gas atmosphere in the furnace
plays an essential role, since it determines the degree of oxidation of the
product which is in many cases important for the magnetic properties (see
for instance § 54.3).

The sintering process does not produce an entirely dense material, but a
product having a certain porosity. The porosity p of a ferrite is the relative
volume of the pores it contains, and it is derived from a comparison of the
X-ray density d with the apparent density d of the ferrite. Fig. 43.1 shows a
photomicrograph of the polished and etched surface of a manganese-zinc
ferrite with porosity p = 0.1. The firing programme was such that the
sample was held for five minutes at the maximum temperature of 1375 °C,
If the material is held for one minute at a maximum temperature of 1435 °C
a denser product with larger crystals is obtained (p = 0.05), a picture of
which is shown in Fig. 43.2. The firing temperature necessary in order to
obtain a dense product depends on the chemical composition of the ferrite.
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Fiz. 43.1. Polished and etched surface ol a manganese-zine ferrite, sintered for five
minutes at 1375 °C. Porosity p — 0.1
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Fig. 43.2. Same ferrite as in Fig. 43.1, but now sintered for one minute at a tempera-
ture of 1435 °C. Porosity p — 0.03.
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ol a second phase of aFe:0s.

Fig. 43.3. Polished and etched surface of MnFeQ a magnanese ferrite with a scgregation
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For instance a porosity of less than 0.1 is obtained for CuFezO4, MnFezO4
and NiFes04 if the sintering takes place at temperatures of about 1100,
1200 and 1400 °C respectively. These temperatures are related to the melting
points, which are 1300°, 1500° and 1650 °C respectively. It seems that
nickel ions in particular do not diffuse easily in ferrites. The addition
of zinc lowers the firing temperature of most ferrites. If samples of
Me,Zn,-,Fes0,4 with various values of 8 are sintered at the same tempera-
ture, the sample with the highest zinc content will have the greatest density.
The temperature at which good sintering takes place depends to a large
extent also on the grain size and grain shape of the starting material. A
very fine-grained powder gives dense products at a lower firing temperature.
For this reason the ball milling of the compounds or of the prefired ferrite
is often replaced by a treatment of the powder in a vibration mill which
leads to a smaller particle size.

43.2. PHASE DIAGRAMS

Many ions can occur in a ferrite in different valency states; iron for example
can occur as a divalent or a trivalent ion. In order to obtain a certain chem-
ical composition of the ferrite it may be necessary for some types of the ions
to occur in different valencies. If either the gas atmosphere during firing
is not sufficiently oxidizing, or the ratio of the quantities of metal ions in
the starting materials is not correct, the wanted concentration cannot be
obtained. Where the deviations are considerable a second phase segregates
from the ferrite. This can have an adverse effect on the magnetic properties.
Under the microscope this second phase is often clearly visible on polished
ferrite surfaces. Fig. 43.3 (see page 235) gives an example of a second phase
of aFe03. This is the result of an attempt to make a spinel from FezOs
and MnO as basic materials having a molar ratio of 55 : 45. The light-
coloured segregations of the aFe2O3 phase, clearly visible on the photograph,
result from a firing in a too oxidizing atmosphere. The light colour is
characteristic of aFe;0s. If the ferrite is fired in a reducing atmosphere,
single-phase manganous-ferrous ferrite may be produced. Inhomogeneous
oxidation or reduction of the sample will take place if there is no equilibrium
between the sample and the atmosphere. Often a so-called surface layer will
be the result; an exaggerated case is shown in Fig. 43.4 (see page 336). Phase
diagrams of the iron-oxygen and manganous-iron-oxygen systems have been
given by Darken [Da 1] and by Gurry [Gu 8] respectively.

Where the compositions are complicated it is important to study the com-
plete phase diagram. For instance in the case of Mn,Zn-ferrites the series
of mixed crystals of MnFe;O4 and ZnFe2O4 form only one single line of
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compositions in the large spinel field of the quaternary system Mn-Zn-Fe-O.
The compositions FezO4, Mn3O4 and ZnMn2O,4 also belong to this system,
and for a complete understanding at least a large part of the spinel region
has to be investigated. These investigations have only been carried out in
a few cases, e.g. in the system Mg-Mn-Fe-O where the first compositions
with rectangular hysteresis loops were found. An important point is to
represent phase diagrams in the appropriate way. In the quaternary system,
which can be represented as a tetrahedron, all so-called stoichiometric
compositions (Mg,Mn,Fe)304 are found in one triangular plane. In order
to obtain a simple diagram it is necessary to place equal amounts of compa-
rable compounds in the corners. This is done in Fig.43.5, thoug in one corner
of the triangle no spinel compound exists but rather a mixture 3MgO + }Os.
In this method of representation, introduced by Jonker [Jo 6], the three diffe-
rent metal ions appear with equal weight and the simple compositions as
MgFe;04 MnFe204, MgMn204 and MgMnFeO, are found on simple loca-
tions in the diagram. In the MgO-MnO-Fe203 or MgO-MngO4-Fe 03 dia-
grams, which are often used, spinel compounds, apart from the simple ones,
cannot be represented. The region of spinel compounds is large in this system
(it covers the area within the drawn contour in Fig. 43.5). For different parts
different methods of preparation are needed, for instance for FegO4 a high
temperature and a reducing atmosphere, for MgMn204 a low temperature
and a high oxygen pressure. The spinel compounds obtained by firing at
1350 °C and slow cooling in air lie within the hatched area of Fig. 43.5.
The compounds containing Fel and Mn'V ions are for the greater part
not included and even MnFe;0, does not belong to this region. There are
of course also non-stoichiometric compounds with an excess or a deficiency

Fe3 04

Fig. 43.5. Example of a

C<7J// .
phase diagram of a ternary
% oxide system. The area be-
tween the solid lines repre-
MnzFe O; sents crystals with spinel

y MgMn /:'\e Oy structure. The smaller shaded
/ ((/ region represents spinels ob-

// tained by firing at 1350 °C

y in air followed by slow cool-

1 .
3Mg0+1203  MgaMn Oy MgMny0; MnyQ; 08
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of oxygen. These compositions can only be represented in the three-dimen-
sional diagram.

43.3. INTERNAL DEMAGNETIZATION

In the magnetization of polycrystalline ferrite specimens internal demag-
netizing fields occur owing to the porosity of the specimens. An impression
of the demagnetization due to pores is obtained by measuring the so-called
ideal magnetization curve; see § 28.1. From the slope of this curve an inter-
nal demagnetizing factor N; can be derived. It appears that a relationship
exists between N; and the porosity p which is fairly independent of the
chemical composition of the spinel. For Nip.5Zno.sFe2Oy4 this is represented
by curve a) in Fig. 43.6. When, however, we determine in the same way the
relation between N; and p for various specimens of hexagonal ferrites for
which the basal plane is a preferred plane of magnetization (see § 39.1),
we then obtain an entirely different picture [St 3], as can be seen from
curve b) in the same figure, which holds for Coz2Z. Even for very dense ma-
terials a fairly large value for the factor N; is obtained, and it increases ra-
pidly with the porosity; curve b) is seen to be shifted towards the left with
respect to curve g). This anomalous behaviour can be understood by re-
ference to Fig. 43.7; a crystal lying crosswise affects the pattern of the
lines of force in the same way as an air cavity would. The demagnetizing
influence is even greater: in the surrounding crystals the lines of force must
continue to run parallel to the preferred plane, i.e. in the plane of the

020
N; f
1 015 f
b
a
0.0 5
f= .
i 0 , Fig. 43.6. Internal demagnetizing coeffi-
c cient N; as a function of porosity p;
] curve q) for the ferrite with spinel structure
005 jf=022 Nio.sZno.sFesOs, curve b) for isotropic
) 1 f=050 specimens of CozZ with a hexagonal cry-
3 F=078 stal structure and a preferred plane of
>':f =091 magnetization, curve ¢) for anisotropic
: /"d specimens of CosZ having different degrees
00 0.2 o of orientation.
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Fig. 43.7. Demagnetization caused by a wrong-

ly oriented crystal in ferrites in which the crys- 1
tals have a preferred plane of magnetization
(for instance the basal plane in the hexagonal
crystal structure). The preferred plane of the
crystals lies in the plane of the drawing; that
of the hatched crystal is perpendicular to the
plane of the drawing and parallel to the hatch-
ing. Magnetic lines of force have to bend
round the sides of this crystal. 1

drawing. They can thus only bend around the wrongly oriented crystal
towards the left and right and not backwards and forewards. It is under-
standable, therefore, that the internal magnetization of such a fairly dense
material is comparable to that of a cubic ferrite having a porosity p of about
one third.

43.4. MECHANICAL PROPERTIES

By sintering ferrites at high temperatures the material gets mechanical
properties which greatly resemble those of earthenware. Thus, while it
cannot be worked with a cutting tool, it can be ground and lapped. When
grinding, the same precautions should be taken as with other ceramic materi-
als: wet grinding is necessary with small feed and with suitable grinding
discs. Very accurate dimensions and cleanly fitting surfaces are obtained by
face-grinding and centreless rotary grinding. The ground surfaces can be
very well cemented together with adhesives such as plastics of the aethoxyline
group which harden at a temperature of about 180 °C. The air gap need
not be greater than a few microns. In this way more complicated shapes
can be built up from simple ferrite components. Although ferrites are not
sensitive to water or brine, it is advisable, if the ferrites are to be used in
high-quality circuits, to impregnate the components in order to prevent
dielectric losses through absorption of moisture.

The mechanical strength of sintered samples depends on the porosity.
In Fig. 43.8 the compressive strength for uniaxial pressure and the tensile
strength of nickel zinc ferrites with spinel structure are plotted as a function
of p [Bu 2]. It is well known that the ultimate unidirectional compressive
stress of ceramic materials exceeds their ultimate tensile stress by a factor of
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10to 30. When using these data it must be taken into account that the tensile
strength of ceramic materials is a function of the cross-sectional area —
or better, of the volume of the material, since

. . L - 200

fracture in ceramic materials is essentially a

matter of statistics. Fracture is initiated at (kg% mz;oo .
50

the weakest point in the volume under load:
the probability of there being a weak point
increases as the volume increases. There are
various indications that the tensile strength,

I . N
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as given in Fig. 43.8, should be reduced by a N—1%
factor of 2 to 3 for very large cross-sections 2
in order to obtain the correct value. 1
X o . 0 o7 o0z 03 04
Young’s modulus for sintered ferrites of —_—p

all chemical compositions has the order of gjg 438 The compressive
magnitude 102 dyne/cm2?. It depends on strength, o1, and the tensile
the porosity as shown by Fig. 43.9. The strength, o3, as functions of the
temperature dependence of this quantity can  POrosity p. The curves refer to
be influenced to a large extent by minor vari- * cross-section of 2 mm > 3
. . R .. mm, and they are roughly the
ations in the chemical composition, (see [Bu3]).  same for the various types of
Other properties which are fairly independent  ferrites, after [Bu 21.
of the chemical compositions are the thermal
conductivity, about 1.5 % 10-2 cal/sec-cm-deg, and the heat capacity, about
0.2 cal/g-deg.
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Fig. 43.9. Young’s modulus of nickel- (10%dy e/t cm’)
zinc ferrites with spinel structure as 1.0
dependent on the porosity p, after \
[Bu 3].
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Various methods of preparation are known by means of which a magnetic
material is obtained with a textural alignment of the crystallites. In the cera-
mic materials use might be made, for instance, of the non-spherical shape of
the powder particles of the hexagonal oxides. These crystals grow prefer-
entially in the basal plane and much less in the direction of the ¢ axis. By
packing the powder in steel tubes sealed tightly at both ends and rolling these
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at high temperature, it has been found [St 2] possible to produce a slight
anisotropy.

A more elegant method [St 2] is to make use of the magnetic crystal aniso-
tropy of the hexagonal oxides. Particles that can rotate freely, and for which
the c axis is the preferred direction of magnetization, will be aligned by an
externally applied magnetic field such that
their preferred axes of magnetization are
parallel (see Fig. 44.1). The aligning torque
exerted on the crystal of Fig. 44.1 is:

T = K sin 26. (44.1)

This torque is equal to K; for 8 = 45° or
Fig. 44.1. Equilibrium orientation  135° and equal to zero for § =0°, 90° or
for the magnetization M, ina fixed 18 If for ¢ — 90° the field strength is
f:;t:)c;: v::‘t;:n;:m:;t:;z’ eg; ; n; greater _than 21(.'1 /MF, the magnetization
is applied at an angle « to the pre- Totates in the direction of H, (6 = 90°),
ferred direction. while the orientation of the crystal axes

remains unchanged. The mechanical torque
is then zero. The rotation of the magnetization is momentary, so that in general
the particle will not rotate with the magnetization when the field is applied.
Even when the field is further increased, the particle will therefore remain
unoriented. If, however, H = }/2 Ki/Mj;, the sudden application of the
field will give rise to the state with 6 = 45°, i.e. with a maximum torque.
In that case the particle will be oriented. The conclusion is that the value
of a suddenly applied external magnetic field should be approximately
H= ]/ 2 K1/Mj; in the case of BaFe;30;9 for instance, this is about equal
to 11,000 oersteds. This process is most effective if the powder consists
of separate particles which are unicrystalline. For an optimum result the
particles should hinder each other as little as possible in their orientation.
In this respect the platelet-shaped crystals of hexagonal oxides are unfavour-
able. The powder subjected to treatment with the magnetic field should thus
not be too closely packed. After the particles have been oriented in the
magnetic field, they must be fixed in this state without loosing the texture
obtained. A simple method would be one in which the powder is first mixed
with warm, molten paraffin wax, the suspension then being placed in the
magnetic field and the paraffin wax allowed to solidify. This method, however,
is often not practicable, since the magnetic material in most cases must also
have a high density. Fixation together with a high density can be obtained
with ceramic substances by compressing the powder suspension in a mag-
netic field and by subsequent sintering. Although the forces arising during
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the compression process are much greater than the orienting force of the
magnetic field, a good texture is nevertheless obtained.

Finally, the texture must not be lost by a recrystallization process at the
high temperature at which sintering is carried out and which is far above the
Curie point. Surprisingly enough it has been found that the texture of the
starting material is even improved by sintering at a temperature where crystal
growth occurs. This so-called foliate texture of such a crystal-oriented mate-
rial can clearly be seen in Fig. 44.2a and b (see page 237), which shows
photomicrographs of the faces of a cube of this material. In Fig. 44.2a the
direction of the magnetic field applied during compression is perpendicular
to the plane of the figure, whereas in Fig. 44.2b it is parallel to the figure.

It appears that the greatest improvement is obtained in the texture when
the density of the sintered material is about 909 of the X-ray density.
The phenomenon of the improvement of a preferred orientation by grain
growth has been extensively studied on metals, where it could more directly
be followed with an electron emission microscope [Ra 2]. It is found that in
a matrix of identically or almost identically oriented crystals, which contains
a differently oriented crystal, the latter crystal generally disappears while the
boundary planes between the identically oriented crystals remain unchanged.
It also appears that the wrongly oriented crystal can only grow if it is large
with respect to the crystals of the matrix. This behaviour can be understood
from surface energy considerations.

In the hexagonal oxides, in which the basal plane is a preferred plane
of magnetization, the foliate structure can be obtained [St 3] if a powder
of a material of this kind, the particles of which are single crystals, is sub-
jected to a magnetic field which varies in direction but remains parallelto
the same plane. This may be, for example, a rotating magnetic field, obtain-
able by mechanical rotation of a yoke magnet. A rotating magnetic field
can also be obtained with a stationary magnet, making use of for instance
the three phases of the a.c. mains. Fig.44.3 (see page 238) shows two electron
photomicrographs; the foliate texture of the samples is clearly visible. In Fig.
44.3q the preferred planes, which are also the basal planes of the crystals, lie
parallel to the plane of the paper, while in Fig. 44.3b they lie at right angles.

The magnetization curves of a specimen with foliate texture can be plotted
for magnetization in a preferred direction and in a difficult direction. In
the case of an ideally oriented sample the area between both curves corre-
sponds to the crystal anisotropy energy of the material. When the sample is
not ideally oriented the two curves lie more closely together and include an
area which is a fraction f of the area between the corresponding curves of
the single crystal. We shall call this fraction the degree of orientation of
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the anisotropic material. The degree of orientation of oriented specimens
of BaFe12019 or of CozZ, for example, is found to have values up to over
90%. Results of measurements of the internal demagnetizing factor N;
for crystal-oriented specimens of CosZ are plotted in Fig. 43.6, curve c),
showing the relevant degree of orientation f. It is seen that Ny drops sharply
with increasing degree of orientation, entirely as expected: we thus approach
the ideally oriented state where, as in the case of the spinels, Ny is determined
exclusively by the porosity.

The orientation of crystals by a magnetic field can only occur provided
the crystal anisotropy field H4 is not too weak. The result is poor for ma-
terials with a composition where H4 is in fact too weak, as for instance
in the case of certain mixed crystals of CoaW with other Me;W compounds.
Substances of this kind can be oriented by a method developed by Lotgering
[Lo 2] in which the materials are prepared from a ferromagnetic oxide whose
crystals are oriented with help of one of the above-mentioned methods.
An example of such a reaction is:

BaFe; 2019 + 0.8 CoO + 1.2 ZnO 4 2 FexO3z— BaCoy.§Zn; . 2Fe160s7.

The starting materials are mixed together and, during compression, are
placed in a uniform magnetic field, as a result of which the c axes of the crys-
tals of BaFe;201 are aligned mutually parallel. The reaction during sintering
is now such that the c axes of the product Cog.sZn;,2W are also parallel,
as can clearly be seen from X-ray diagrams similar to those of Figs. 37.9
and 37.10. The basal plane of the product Cog sZn;.sW is a preferred plane
of magnetization, so that the specimen obtained has a magnetic anisotropy
corresponding to this. The anisotropy of this compound, however, is much
too weak for orienting in the more conventional way. Several of such
so-called topotactical reactions have been described by Lotgering [Lo 2].



CHAPTER XII

ELECTRICAL PROPERTIES

§ 45. D.C. Resistivity

The d.c. resistivity of oxide materials can be fairly reliably measured by
means of a sonde method as illustrated schematically in Fig. 45.1. The same
current is passed through a resistor R and the ferrite rod F. The voltage
between points B; across a part of the ferrite rod is compared with the vol-
tage between points Bz across the known resistance R. For an accurate
measurement the internal resistance of the voltmeter V should be high
as compared with the resistance of the ferritte rod and the resistances
of the contacts B;. It is also possible to measure the resistance directly
between two electrodes on a ferrite rod, provided the contacts are properly

14

Fig. 45.1. Four-contact method for meas-
s 8 F uring the electrical resistivity of a ferrite

] / .
7 2 7 rod F.. The voltage dfop across the points
A A B1B; is compared with the voltage drop
between the points BzBs across a known

R resistance R.
8, 82

applied. Indium-amalgam contacts [Ui 1] which are obtained by rubbing
indium, moistened with mercury, against a clean and preferably freshly
ground surface, are very well suited for the purpose. Grinding is necessary
because difficulties may be presented by a surface layer formed during
firing. This layer is shown in Fig. 43.4 for an extreme case; it can have either
a higher resistivity than the bulk, owing to re-oxidation, particularly at the
surface of the product during cooling, or a lower resistivity than the bulk,
as found for example with mixed nickel-zinc ferrites of spinel structure
[Ui 1]. In the latter case the explanation is that zinc has evaporated from
the surface layer at the high sintering temperature and as a result ferrous
ions have formed.

For ferrites the resistivity at room temperature can vary, depending on the
chemical composition between about 10-2 ohm-cm and higher than 1011
ohm-cm. It has long been known [Ve 5] that low resistivities are caused in
particular by the simultaneous presence of ferrous and ferric ions on equi-
valent lattice sites (octahedral sites). For example, FesO4 at room tempera-
ture has a resistivity of approximately 7.10-3 ohm-cm, and NiFe;O4 with
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TABLE 45.1

RESISTIVITY p AND DIELECTRIC CONSTANT ¢ MEASURED AT A FREQUENCY OF 1 KC/S ON
SPECIMENS OF Nig.¢Zny.gFe204, COOLED FROM THE SINTERING TEMPERATURE IN DIFFERENT
WAYS (AFTER [KO 6)).

, Sintering Sintering Method of F e0 p
Ferrite temp. . % by €
atmos. cooling . ohm-cm
°C weight
la 1300 Oxygen Slowly in oxygen 0.10 540,000 1,710
15 1300 Oxygen Rapidly in air 0.38 1,300 28,200
2a 1300 Air Slowly in air 0.07 136,000 4,300
2b 1300 Air Rapidly in air 0.42 1,100 39,000
3 1280 Air Slowly in air <0.05 960,000 1,090

some deficiency in iron and sintered in a sufficiently oxidizing atmosphere
so that the product contains no ferrous ions, can have a resistivity higher
than 108 ohm-cm. Intermediate values of resistivity have been given by
Koops [Ko 6] among others, for specimens of Nip.4Zno.¢Fe204 fired in
different gas atmospheres; the results are shown in Table 45.1. A relatively
low resistivity is found to be associated in these ferrites with a high dielec-
tric constant. An extensive investigation into the origin of the electrical
conductivity of spinels has been carried out by Verwey ez al. [Ve 6] and later
by Van Uitert [Ui, 1, 2 and 3] and Jonker [Jo 7], who were concerned es-
pecially with obtaining ferrites of high resistivity. Specimens with a varying
ferrous content can be obtained by using as starting materials mixtures

T 1
e Nip3Zng7Fe2+50%+¢
(ohmcm)
108
106
104
\
102 \
P <a—|—wn P
-04 -0.2 0 02 N4
—_

Fig. 45.2. The dependence of resistivity p upon iron content of the ferrites
Nio.3Zno.7Fes + 504-¢ fired at 1250 °C in oxygen. The value of 8 is
determined by the starting material and the value of e by the firing
conditions, after [Ui 3].
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with different iron concentrations and by sintering all these in the same way.
For the ferrites Nig.3Zno.7Fez+504+¢ Fig. 45.2 gives the resistivity in depen-
dence on the surplus or deficiency 8 of iron ions for the case where the
ferrites are sintered in an oxygen atmosphere at 1250 °C. The value of 3
is determined by the starting material, the value of ¢ by the sintering con-
ditions. With ferrites of the series Coi-sFes;504, Jonker [Jo 7] has
obtained the results of Fig. 45.3a. Two regions of conductivity are
found; one region of compositions containing Co™ and Co™ and having

108
p m? }
ohmem o5 2 Cos.gFe21504
T 105 el
04
;03 \\
03 Ay
I
}ol
0w o5 o o005 0w
a —_— =
7x10°6, 28x107?
|
i
6 2%
(ohmac'”rl Coy-gFe2.50; Co;_aFezﬂsO‘/ (ohmcm)-‘l
51 20
T TN | ) T
|
3 \ ' 12
\ |
2 } 8
I /
N 4
!
LY |
0 0

-0.10 -005 00 005 o1
hp — &
Fig. 45.3a. The dependence of resistivity p upon iron content of the
ferrites Co;—sFea.t 504, after [Jo 7]
b. A replot of the measuring points of Fig. 45.3a. The conductivity o
is now given on a linear scale as a function of iron content of the
ferrites.
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a high resistivity, and one region of compositions containing Fell and Felll
and having a low resistivity. Measurements of the thermo-e.m.f. show that
where there is an excess of cobalt ions, hole conduction occurs (p type semi-
conductor) and in the case of excess iron there is electron conduction (n-type
semiconductor) [Ui 1]. In Fig. 45.3b the results of Fig. 45.3a have been
replotted so that it can be seen that the conductivity increases somewhat
more than linearly with the electron or hole concentration of the ferrite.
In the ferrites of Figs. 45.2 and 45.3 the electron concentration can reach
a value of almost 1022 ¢cm~3, which is much higher than found in normal
semiconductors (about 1019—1020 ¢m-3). This figure combined with the
results of the resistivity measurements leads to an abnormally low mobility
for electrons and holes in ferrites, namely about 10-4 and 10-8 cm?2/V sec,
respectively.

A low resistivity due to the simultaneous presence of ferrous and ferric
ions on equivalent lattice sites can also be obtained in stoichiometric oxides
by applying the principle of controlled valency [Ve 6]. If small quantities,
up to about 19, of foreign ions, can be incorporated in an oxide of very
high resistivity, and if these ions have a valency which differs from that of
the ions already present, (for instance titanium ions in FezOs), then it is
possible to force some of the ions present into a different valency state. The
result is that ions of the same atom are now again present in different va-~
lencies, so that the electrical resistivity of the oxide is reduced ([Ve 6] and
[He 2)).

It is often important to make ferrite samples with a high resistivity. It is
evident from what is said above that it is then necessary to ensure that
there are no ferrous ions in the stoichiometric ferrite. However, it appears
that stoichiometric NiFe»O4 or MgFe0s, for example, has a resistivity
which is only slightly higher than 108 ohm-cm. Van Uitert assumes that this
is due to a slight dissociation in the ferrite, for instance according to:

Nill 4 Felll 2> Nilll 4 Fell,

which in turn makes conductivity possible between Fel and Fell jons and
between Nill and Nill jons. Van Uitert [Ui 1] obtained an appreciable
increase in the resistivity of the ferrite by adding to it small quantities of
manganese or cobalt ions. Fig. 45.4 gives a picture of this improvement,
which results in resistivities higher then 101! ohm-cm. The explanation of
this substantial effect [Ui 3] is that in the case, for example, of the addition
of Mn to NiFe;0,4 for the purpose of obtaining a stoichiometric ferrite
with the formula NiFe; 9Mn,O4, the concentration of Fel ions is kept
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Fig. 45.4. The increase of the resistivity of NiFeaO4 samples as a result
of additions of manganese or cobalt. Firing for 10 hours at 1250 °C
in Oa. The value of ¢ is determined by the firing conditions. After [Ui 3].

low by the Mn1I jons, while the concentration of any Nill! that may be
present remains low owing to the presence of Mn!! ions:

Fel + MnTT — Felll 4 Mnll

and Nilll + MnIt —> Nill 4 MnlIL,

This is related to the increase in the third ionization potential for the ions
in the series Cr-Fe-Mn-Co-Ni. Since Mn and Co occur between Fe and Ni
in this series, small quantities of these two kinds of ions have the same effect
in opposing the formation of Fell and Ni'l ions.

If we use the method of raising the resistivity by adding small quantities
of, say, Mn ions, then these ions will occur in two valencies and probably
also on equivalent lattice sites. Nevertheless, this results in only a small
coptribution to the conductivity, owing to the low concentration of these
ions.

Ferrites are semiconductors, and their resistivity decreases with increasing
temperature according to the relation

p = pog 5T, 45.1)

where E, represents an activation energy which, according to Verwey
and De Boer [Ve 6] is the energy needed to release an electron from the
ion for a jump to the neighbouring ion, so giving rise to electrical conduc-
tivity. Upon an electron jump, a displacement occurs of the ions in the neigh-
bourhood of the electron in question (see also [He 2]). The mean free path
is only about 3 A. It has been pointed out by Jonker [Jo 7] that in these non-
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Fig. 45.5. Temperature dependence of d.c. resistivity for several ferrites.

impurity (intrinsic) semiconductors the influence of temperature on the
concentration of the conduction carriers is relatively small. This means that
the temperature influence on the conductivity is only a result of the change
of the mobility of the electrons or holes with temperature. Fig. 45.5 gives
the relation between log p and 1/T for various ferrites. In most cases a
straight line is found in a wide temperature range, with a slope corresponding
to E, according to the relation:

E, = 0.198.10-3 . d(logp)/d(1/T). (45.2)
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The values for E, lie between 0.1 and 0.5 eV. A high activation energy E,
always goes hand in hand with a high resistivity of the ferrite at room
temperature. In a few cases a change in slope is found in the curve, which
points to two parallel conductivity mechanisms with differing activation
energies. Similar changes have also been found at the Curie points of
MnFep04, NiFexO4 and CuFex0y; (see [Ko 7]). As regards the curve of
resistivity versus temperature, a special case among the ferrites is pure
FegO4 and Fe3O4 which is not entirely stoichiometric or in which a small
concentration of foreign ions has been substituted. Curve I in Fig. 45.6, as
found by Verwey and Haaijman [Ve 4], shows log p plotted against 1/T
for highly stoichiometric FegO4. The jump in the resistivity at 119 °K is
caused by the electron ordering described in § 31.4, which is associated
with a transition from cubic to orthorhombic crystal structure below 119 °K.
It can be seen from the same figure that an excess of yFe203 in Fe3zO4
reduces the jump in resistivity and shifts it towards lower temperatures.
The same effect is found for minor substitutions of Ni, Co, Mg, Mn and
Zn ions [Ep 1]. Domenicali [Do 2] found on a single crystal of FesOs
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Fig. 45.6. The resistivity of sintered bars of FesO4 having a practically stoichiometric
composition (curve I) and with small quantities of yFezOs (increasing from II to VI)
dissolved in the lattice, after [Ve 4].
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for the resistivity in the three principal crystallographic directions a similar

jump as indicated in Fig. 45.6. Above room temperature the resistivity of

Fe3O4 does not continue to drop, but shows a minimum at 80 °C (see Fig.

45.7), above which the conductivity of FezO4 shows a metallic behaviour.
—_— T(°K)
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\
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M.
1.04 '\ 7

0 40 80 120 160
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Fig. 45.7. Resistivity of a natural magnetite single crystal in the [100]
direction above room temperature, after [Do 2].

§ 46. Frequency—Dependence of Conductivity and Dielectric Constant
46.1. EXPERIMENTAL RESULTS

Upto a frequency of about 100 kc/s measurements of the conductivity and
the dielectric constant of ferrites can be carried out on a bridge, as described
for example by Kohler and Koops [Ko 4]. For much higher frequencies,
resonance methods are used, such as described by Gevers [Ge 2]. An ideal
capacitor C, (with loss-free dielectric) in parallel with a resistor R, is taken
as the equivalent circuit of a capacitor with a dielectric having a certain
conductivity. The resistor Rp can be considered as built up from two parallel
resistors, one representing the finite ohmic resistance of the dielectric (ferrite)
and the other representing an equivalent resistance of such a value that the
energy dissipated in it is equal to the dielectric losses in the dielectric.
It is not possible by a measurement at a single frequency to determine these
two resistances separately, and for this reason it is usual to apply the simple
equivalent circuit of Fig. 46.1 for a capacitor with dielectric. For the impe-
dance Z between points P and Q we can write:

Z-1 = jwCyp + Rp~L. (46.1)

Putting ', as the real part of the dielectric constant and o as the conductivity
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(a)

Fig. 44.2. Photomicrographs of sintered specimens of BaFei2019 with oriented crystals.
The crystals with a preferred direction of magnetization have been oriented in a uniform
magnetic field. In (&) the hexagonal basal planes lie in the plane of the paper; in () the
basal planes are perpendicular thereto. 1 ecm of the figure corresponds to 18 microns.
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P

C P RP

Q

Fig. 46.1. Equivalent cir-
cuit of a capacitor with
a lossy dielectric.

we have Cp = 1.11.10712%,'4/4nd farad, and
Rp = d/Ac ohm, where A4 expressed in cm? is the
area of the capacitor plates, and d expressed in cm
is the distance between the plates, which is entirely
filled with the diclectric under investigation. (The
plates are electrodes applied to the dielectric.) The
fact that the dielectric is not loss-free can generally
be denoted by a complex dielectric constant e,
hence:

The dielectric loss factor is given by:

€ = ep’ — iep”’, (46.2)
where &' = 113 %1012 ¢/w. (46.3)
tan 8§ = (wCpRp) ! = 4nojwey'. (46.4)

Brockman ef al. [Br 2] have discovered that sintered ferrites with a high
conductivity at low frequencies (below about 1 Mc/s) always have a high
dielectric constant (¢ = 105). Koop’s results in Table 45.I give an impression

X
2000 - ~%p g/ x X H20
X
¢ pw o 105G~
Eprép (ohmem]™!
X
1500 ° 1% T
x
1000} 10
b3
500 - X . —0.5
‘o
16
0 I ] ] 0
10 102 103 04 10°
f(</s)

Fig. 46.2. Dielectric constant ¢'5 and specific conductivity ¢ of a ferrite
Nio.aZno.eFe20s, sample No. 3 from Table 45.1. Measuring points
after {Ko 6]. Drawn curves according to (46.5). The €' curve is cal-
culated according to (46.3) with correction for the d.c. conductivity.
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of the relationship between ¢ and e. In general it is found that e is roughly
inversely proportional to the square root of ¢. Both quantities depend on
the measuring frequency, as may be seen, for example, from the measuring
points in Fig. 46.2. The relaxation in ¢ and o can be described in terms of
the relaxation formula:

00— O
c=0, +——
bt 1+ w2s2
, o e (46.5)
€p :600 +¥1+w272’

where the indices 0 and ~o indicate the limiting values at very low and at
very high frequency respectively, and where the relaxation time - is a
characteristic time constant of the ferrite. The relaxation frequency (oc1/7)
for the different materials appears to be approximately proportional to the
low-frequency value of the dielectric constant. The true low-frequency
level for € has never been reached according to the data recorded in literature;
for this purpose measurements are needed at frequencies below 10-1 ¢/s.
Table 46.1 gives a survey of the quantities € and o as found for diverse sub-
stances. A constant high-frequency level for ¢ has not been reached for the
ferrites mentioned in the table, which have a high dispersion frequency.
At 9300 Mc/s the dielectric constant of all ferrites has decreased to about 10,
which is a value corresponding to the polarizability for oxygen ions [Fa 2].
It has been found that at field strengths above 1 volt/cm and at low frequency

TABLE 46.1

DATA CONCERNING DISPERSION IN THE DIELECTRIC CONSTANT ¢ AND THE CONDUCTIVITY
o OF A NUMBER OF FERRITES WITH SPINEL STRUCTURE.,

Low-frequency High-frequency Relaxation fre-
value *) value quency (in kc/s)
Ferrite -
ap Too According
€0 (ohm-cm)-1| = (ohm-cm)—1! Measured to (46.7)
No. 3 from Table 45.1 1,980 | 0.5-10-¢ 16 2.1-10-8 1.7 2.0
No la . 1,710} 2-10-¢ 13.8 14-10-¢ 4 15
No. 15 . 28,200 | 0.8-10°3 ~42 2:10-3 200 130
Hio.48Zn¢.48Fe™g.04
Fe204 100,000 | 7.7-10—3 i) >11) 2000 —_
Nig.5Zn¢.5Fe204 2,100 | 0.5-10-8 15 2:10-6 1 1.8
MgFe204, after
[Fa 1] | 30,000 | 0.3-10-% 22 4.8:10-6 i1 0.3

*) The figures represent the results of measurements at the lowest frequency.
1) With this ferrite no constant level for € and ¢ has yet been reached at 50 Mc/s.
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the quantities € and o~ (i.e. the resistivity) become

smaller with increasing field strength, particularly
R, (ot for ferrites with a high dielectric constant. It

appears that in sufficiently high measuring fields

the low-frequency value of e does not differ much
Ry C; from the high-frequency value.

46.2. PHENOMENOLOGICAL THEORY

Fig. 46.3. Equivalent cir- It may be assumed that a polycrystalline sintered
cuit for a ferrite core  ferrite consists of large domains of fairly well
showing relaxation dis- 4y c4ine material (R; and C; in Fig. 46.3) which
persions in € and o with | R
a single time constant. are separated by thin layers of a relatively poorly
conducting substance (Rz and Cz). These boundary
layers can have arisen by superficial reduction or oxidation of the crystals
in the porous material as a result of their direct contact with the firing
atmosphere. In this case the relaxation time = is given by:

C1+ G €1 + ezfa 1
T = = . ,
1/R1 + 1/Rs 47 (o + aafa) 9.1011

(46.6)

where a(<£1) is the ratio between the thickness of the boundary layer and
that of the large domain. Koops [Ko 6] has assumed that the intrinsic dielec-
tric constant of the large domain has approximately the same value as that
of the boundary layer (e1 = e2). This will be approximately equal to the e
caused by the oxygen ions. If it is assumed, moreover, that Rz>> Ri, we
then have, if o, is expressed in (ochm-cm)~1:

€ = €1

T =2 01

€0 ~esfa 46.7)
op = a3fa

T+ =~ 0.0855x 1012 €O/°'oo .

In Fig. 46.2 the values of € and o of the ferrite No. 3 in Table 45.1 are plotted
as a function of frequency. The crosses and the circles in the figure denote
the measuring results, while the curves are drawn in accordance with (46.5),
it being assumed that = = 0.94x10~* sec. The thickness ratio*) is then
a=0.78%10"2 (a = e2/ep = e Je0)- In those cases where ¢ is very high
(e = 105), o becomes so small that the boundary layers can only be a few

*) Koops [Ko 6] did not disregard the high-frequency conductivity in (46.7) and there-
fore found a different value: a = 0.45-10-2,
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Angstroms thick. It is found then that where the ferrous content is high,
this boundary layer will be only a few lattice spacings thick, whereas with
a lower ferrous content it would be a factor of 100 thicker. Also plotted
in Fig. 46.2 is the quantity e,", which is calculated according to (46.3).
The assumption is made that the direct current conductivity also makes a
contribution to the losses at high frequencies, for which reason the values
inserted for o in (46.3) are the differences between o measured at a specific
frequency and its low-frequency value, gp. Kamiyoshi [Ka 2], Volger
[Vo 1] and Fairweather and Frost [Fa 1] found the same activation energy
E, for the temperature-dependence of the d.c. conductivity (cc1/Rg) and
for the relaxation time =. However, according to (46.3), the relaxation time
 is proportional to the high-frequency level of the resistivity (ccRi), so
that we come to the conclusion that the activation energies for the conduc-
tivity of the boundary layers and the large domains are equal. Volger and
Fairweather and Frost assume therefore that the grains make poor contact
with each other. The field-dependence of o and e may, according to this model
be connected with electrical breakdown in the layers.



CHAPTER XIII

STATIC INITIAL PERMEABILITY

§ 47. Static Initial Permeability at Room Temperature
47.1. FERRITES WITH ISOTROPIC ROTATIONAL PERMEABILITY

As explained in Chapter V, the initial permeability of a ferromagnetic sub-
stance can be due either to a simultaneous rotation of the spins in each Weiss
domain or to a reversible displacement or bulging of domain walls. The
initial permeability due to rotations is determined by the anisotropies dis-
cussed in Chapter IV. For the general case that the binding of the magneti-
zation to a preferred direction is described in terms of two anisotropy fields
H4 and Hj, we may write according to (17.4) for the components of the
rotational permeability in the three principal directions of a crystal with
the magnetization vector in the x direction (see Fig. 47.1):

pez =15 (pyy— 1)/dm = Ms/Hy; (pze— Dfdn = Ms/HF.  (47.1)

For a polycrystalline specimen consisting of randomly oriented crystallites
without any magnetic interaction, the average value of the initial perme-
ability po is given by the expression:

(po— 1)/4m = (1/3)(Ms/Hj + Ms/HY). (472

Fig. 47.1. Anisotropic rotational permeability. The x direction
is the preferred direction of magnetization. A rotation of the
magnetization M; in the xy plane over a small angle ¢ out of
the preferred direction is opposed by a relatively small anisotropy
field Hg; see figure a. A rotation in the xz plane is opposed
by the larger anisotropy field Hy; see figure b.
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For the ferrimagnetic spinels, and for the hexagonal ferrimagnetic oxides
having the ¢ axis as the preferred direction of magnetization, we may write
Hj = Hj (=H4); the rotational permeability is then isotropic, so that
(47.2) reduces to:

(o — 1)/4m = (2/3)Ms/HA. (47.3)

If the crystal anisotropy is predominant the anisotropy field H4 is related
to the crystal anisotropy constants according to Table 11.I and eq. (11.7).
In a polycrystalline material the crystals are not free to deform. As a conse-
quence the rotation of the magnetization vector will induce stresses which
in their turn give rise to an anisotropy of the type (13.8). For cubic crystals
this is [Ki 2] (see page 58):

Fo =} [(enn — c12) Ao — 2caar 1 ]. (474)

If the internal mechanical stresses in a polycrystalline specimen are so
great that the stress anisotropy predominates, the situation for determining
the permeability due to rotations is complicated. Assuming for the sake of
simplicity that the magnetostriction is isotropic and positive, then according
to [Be 8] the permeability due to rotations, at an average stress value |oj,
will be of the order of magnitude of:

(po— Dfdm = /)M Nllol. (41.5)

The reversible bulging of the domain wall does not change the Weiss
domain pattern as a whole, and as stated in § 16.1 the stiffness of the domain
walls is determined by the energy increase due to the enlargement of the wall
area. The permeability corresponding to this is given by (16.3). According
to this formula the permeability depends not only on the anisotropies de-
termining the magnitude of the specific wall energy, but also substantially
upon the span D of the wall.

For simple spinels one can calculate an initial permeability for rotations
according to (47.3) with the aid of the crystal anisotropy and saturation
magnetization data given in Tables 34.]1 and 32.III. The result is always at
least a factor of two lower than the value measured for polycrystalline speci-
mens. Naturally, the measured permeability varies within a wide range,
since it depends closely on the method of preparing the specimen. The size
and distribution of the pores, as well as the average size of the crystallites,
have a pronounced effect on puo. However, the permeability of the sin-
tered specimens is always appreciably higher than that which is to be expect-
ed from the magnitude of the anisotropy for the case of rotations alone.
This may be the consequence of a contribution from reversible wall dis-
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103 placements. Assuming the span D to be
5|B% : equal to the distance between the domain

Lo o N’O-Sz’jo.s Fe20, —  walls and equal to 5 microns, which, in
2 2N ferrites fired at high temperature, corres-

T e ponds approximately to the distance be-
02 L tween the pores, and assuming further
s E— B0 4 M, ~ 300 gauss and oy = 1 erg/cm?

AN which is an average value for the ferrites

2 /?;7\ "0\0. with spinel structure, we find according

ol NiFez2 04 XX to (16.3) that po~ 200 and according to

N (16.4) that uo =~ 60 for K = 5-10% erg/cm3.

d T\\ It appears from this that in the case of

2 * Mzae|  ferrites whose porosity is not too great and
whose pores are not too finely distributed,

i 02 2% the reversible bulging of domain walls can

—p make a contribution to po which is greater
Fig. 47.2. The initial permeability ~ than that originating from rotations. Fig.
poof polycrystallineferritesamples ~ 47.2 gives the relation between initial per-
;&L : :;?::::; ‘:;' Stl‘llzirriel()ioi)(;stzr;’: meability po and porosity p for specimens
ing the sintering temperature. The of nickel ferrite [Br 7] and nickel-zinc ferrite
sintering temperature for each  With spinel structure which have been fired
sample is indicated. at different temperatures. For p = 0 the
figure shows the result of a measurement
made on a nickel ferrite single-crystal by Galt [Ga 4]. It can be seen that
there is an appreciable increase in the permeability with increasing
density of the material, which appears to be connected with an increase in
the contribution from domain wall displacements.

An investigation of the influence of crystal size on the magnitude of po
has been carried out by Guillaud [Gu 9] on manganese-zinc ferrites (the
firing composition in mol % was 52.5 Fe2Os, 28.3 MnO and 19.2 ZnO).
Care was taken to ensure that the pores occurred as much as possible only
on grain boundaries, so that each crystallite would be free of pores. The
result is reproduced in curve a of Fig. 47.3. It can be seen that there is a
considerable increase in po when the average diameter of the crystallite is
greater than about 5 microns. Guillaud assumes that from this crystal size
onwards the permeability is due not only to rotations of the magnetization
but also to wall displacements. In the preparation of samples with crystallites
larger than 20 microns, pores also occur in the crystals, and these, according
to the author, limit the permeability. Curve b in Fig. 47.3 gives similar results
for a nickel-zinc ferrite.
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Fig. 47.3. Dependence of the initial permeability 1o on the dia-
meter 4 of the crystals in @) manganese-zinc ferrites with spinel
structure, made from the oxide mixture 52 mol ¢, FezOs
28.39% MnO and 19.29% ZnO and b) nickel-zinc ferrite with
spinel structure: 50.3 mol %, Fe203, 159, NiO and 34.7%; ZnO.
After [Gu 9].

For making polycrystalline specimens with a high initial permeability it
is a prerequisite that the magnetic anisotropies, such as the crystal aniso-
tropy and the stress anisotropy, should be small. The crystal anisotropy and
the magnetostriction are determined by the chemical composition of the
ferrite. With cubic crystals the internal stresses may be small, since these
crystals have an isotropic coefficient of expansion. In order to obtain a high
permeability it is also necessary that the specimen should have as few pores
as possible and that the crystallites should have a sufficiently large size.
These conditions can be fulfilled by suitable technological procedure in the
preparation of the ferrite.

A particular case is the ferrite with very small magnetic anisotropies, for
example a manganese-zinc-ferrous spinel, which has been sintered in such
a way that it has only a small porosity consisting of a large number of
finely distributed cavities. In this case the domain-wall thickness may be of
the order of magnitude of the distance between the cavities. It is questionable
whether in such a case one can still speak of a Weiss domain structure, or
whether one should speak of a gradual variation of the direction of magneti-
zation throughout the entire specimen.
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47.2. FERRITES WITH ANISOTROPIC ROTATIONAL PERMEABILITY

For the ferrites with hexagonal crystal structure, whose basal plane is a
preferred plane of magnetization, we have Hy > H4, so that the rotational
permeability of such crystals is anisotropic according to (47.1). The aniso-
tropy field H4 is often a factor of 1000 smaller than Hj, so that, neglecting
the magnetic interaction between the crystals, we can write for a polycrys-
talline specimen in good approximaton:

(po — 1)/4m = (1/3)M,/H7,. (47.6)

Since H is of the same order of magnitude as the anisotropy field in the
case of spinels, hexagonal ferrites with a preferred plane of magnetization
can, in principle, also show appreciable values of permeability. Results of
measurements on polycrystalline isotropic specimens are represented in the
third column of Table 47.1. The initial permeability of a sintered polycrys-
talline sample of these ferrites also depends strongly on the method of
preparation. It is striking, however, that the measured values for uo are
appreciably smaller than those which may be deduced from the magnitude
of the crystal anisotropy in the basal plane (for the anisotropy energy see
Table 39.II). Only in the case of Co-Y is the crystal anisotropy comparatively
high, so that here this anisotropy probably determines the permeability.
It is possible that, during the cooling of polycrystalline samples, appre-
ciable stresses arise in the hexagonal crystals in consequence of the aniso-
tropic coefficient of expansion. Assuming these internal stresses to be so
large that they approach the crushing strength of the ferrite (or =~ 109
dyne/cm?), it follows that for a saturation magnetostriction value of 10-5
(which is a quite normal value for hexagonal ferrites) the maximum value
of the initial permeability o will be approximately equal to 10. Such a
value is found experimentally in many cases, so that it is not unlikely that

TABLE 47.1

INITIAL PERMEABILITY u¢ OF SINTERED SPECIMENS OF HEXAGONAL OXIDES WITH A PREFER-
RED PLANE OF MAGNETIZATION, AT 20 °C.

Isotropic specimen Anisotropic specimen
Ferrite Calculated accordin
2 to (47.6) £ Measured Calculated Measured
Co2Z 75 12 3/ax 75 29
Cog.8Zny.2Z ~ 700 24 ~ 3/5 X700 55
Co1.0Zn1.0Z ~ 400 20 ~ 3/53 X400 43
ZnY > 750 16 > 3/9x 750 35
Co2Y 5 5 ~3ax 5 7
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the stress anisotropy has a substantial influence on the magnitude of uo
for polycrystalline specimens of hexagonal ferrites with a preferred plane
of magnetization. There are no indications that domain wall displacements
make any appreciable contribution in these ferrites. It is easy, however, to
form walls parallel to the basal plane. The energy will be low and the thick-
ness large, since these are both determined by K3 from (11.6), which is small.

Internal demagnetization due to pores is also appreciably larger in the case
of ferrites with a preferred plane of magnetization than in the case of spinels,
and internal demagnetization exists even in the absence of pores, owing to
crystal platelets whose basal plane is at right angles to the magnetic flux;
see § 43.6 and Fig. 43.7. A substantial reduction of internal demagnetization
is obtained in specimens in which the crystallites are oriented with the basal
planes mutually parallel (curve ¢) in Fig. 43.6. The permeability in these
specimens is found to increase with the degree of orientation of the crystals;
see Fig. 47.4. For these samples of Coz2Z and CoZnZ with foliate texture
(§ 44) the degree of orientation is varied by using different currents which
produce the rotating field used for orienting the crystals. All specimens have
approximately the same density. The figure clearly shows the considerable
gain in permeability obtained in particular at a high percentage of orien-
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Fig. 47.4. Initial permeability wo of samples
of Co2Z and CoZnZ with different degrees
of crystal orientation f.



§ 471 STATIC INITIAL PERMEABILITY AT ROOM TEMPERATURE 249

tation. In Table 47.1 the gain in permeability obtained by crystal orientation
is given for several different compositions. For the measurement of the per-
meability the applied field strength is parallel to the preferred planes. For a
measurement where the field strength is perpendicular to these planes, a
lower permeability than in the isotropic material is to be expected. In fact,
by measuring in this way the CoZ specimen with f = 0.91, a permeability
of only 2.5 is found. For an ideally oriented sample the value derived from
the uniaxial anisotropy is 1.3.

In Fig. 47.5 the initial permeability at room temperature is given for the
ferrites of the series Co,Zns-sZ. For 8 < 0.65 the ¢ axis of these ferrites
is a preferred direction of magnetization (see Fig. 39.8) and yy is determined
by the magnitude of Kj. The susceptibility due to rotations is then extremely
small since K; is of the order of magnitude of 105 to 108 erg/cm? or higher.
In specimens with low porosity a further contribution to pp may be expected
from the domain wall displacements. That is why an initial permeability
po == 4 may still be found for specimens corresponding to 8 <¢ 0.65. The
compounds corresponding to & > 0.65 have a preferred plane of magneti-
zation (see Fig. 39.8) and thus in principle have a greater value of 11, which
is in fact found. The decrease in permeability when & increases from 0.65
to 2.0 is related to the increase of anisotropy in the basal plane (K3) with
increasing cobalt content; see, for example, Table 39.1L.

A curve of permeability as a function of the composition, similar to that
of Fig. 47.5, is found for all series of mixed ferrites which exhibit a change
in the sign of the principal anisotropy constant Kj, as for example the series
Co,Me;_sZ and Co,Mes_sW, where Me represents one of the divalent ions
that can occur in Z and W compositions.

30
Lo ° CogZny-sZ
o T=20°C
20
N
(<] D
0 R .
P Fig. 47.5. Initial permea-
bility wo at room tem-
L perature in dependence
0 on the cobalt content for
0 05 10 15 20 ferrites of the series

— G Co 5Zn2— 5Z.
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§ 48. Temperature Dependence of Initial Permeability

48.1. FERRITES WITH SPINEL STRUCTURE
Simple Ferrites

The magnitude of the initial permeability of a magnetic material as a result
of rotations is proportional to the square of the saturation magnetization
and inversely proportional to the magnetic anisotropy energy. Both quantities
vary with temperature, so that uo can be a complicated function of tempera-
ture. In § 11 it was pointed out that the anisotropy is related in general to
the second or a higher power of M;. The permeability will thus, as a rule,
increase up to the Curie point. For a number of simple ferrites with spinel
structure the curves of po versus T are drawn in Fig. 48.1. The curves re-
present measurements on sintered samples, so that the same restrictions
concerning the reproducibility of the curves apply as in § 47. Since the density
of the sample may influence the permeability, it is mentioned in the figure
for each ferrite. In general, po increases with temperature and shows a
maximum just below the Curie point.

For FegO4 a second peak appears in the curve at approximately 130 °K.
This peak is related with a zero point in the crystal anisotropy; see Fig.
34.1. The height of this maximum may be limited not only by some inhomo-
geneity of the specimen but also by the shape and stress anisotropy still
present.

Mixed Zinc Ferrites

Among the technically important ferrites are the mixed zinc ferrites with a
high initial permeability. After Forestier [Fo 1] had discovered that the Curie
points of mixed crystals of ferrites with zinc ferrite are lower than those of
the corresponding simple ferrite (see, for example, Fig. 32.9), Snoek made
a broad investigation into the behaviour of the initial permeability of these
ferrites. In doing so he was the first to prepare specimens with an initial
permeability well above 50 and even of the order of magnitude of 1000.
He found not only that the maximum in the wo versus T curves of Fig. 48.1
shifts with the Curie point towards lower temperatures, and accordingly
may lie at room temperature or immediately above it, but also that, in most
mixed zine ferrites, appreciably higher values of uo appear in this maximum
the lower is the Curie point. Examples are given in Fig. 48.2 and Fig. 48.3
for the series of ferrites Mni—sZn,FesO4 and Ni;— Zn,FezO4. The effect
is less pronounced for the series (Lio.5Feo.5)1-sZn,FesOy4 (Fig. 48.4). Also
in this case, however, pois maximum for the lowest possible Curie point.
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Fig. 48.2. Initial permeability uo as a function of tempera-
ture for mixed manganese-zinc ferrites with spinel structure
Mni-5ZnsFe204. These specimens also contain a small ferrous
ion content.

As examples for the manganese zinc ferrites experimental data are given
for specimens which also contain a low concentration of ferrous ions; these
are ternary manganese-zinc-ferrous ferrites in which the Fe3O4 content
can amount to 59%.

Mixed Cobalt Ferrites
Mixed crystals between ferrites having a negative crystal anisotropy and the
cobalt ferrite having a positive crystal anisotropy can be made with such
proportions of the components that the crystal anisotropy of the mixed
crystal is zero at a desired temperature. Owing to the high anisotropy of
cobalt ferrite, only a small concentration of this ferrite is needed.
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Fig. 48.4. Initial permeability wo a as function of temperature for mixed
lithium-zinc ferrites with spinel structure, (Lio.sFeo.5)1-5ZnsFesO4.

In § 34.1 it was shown that the zero point in the crystal anisotropy of
magnetite (at 130 °K) can be shifted towards higher temperatures by the
formation of a mixed crystal with cobalt ferrite. For the compound Cog.01
Fe2.9904 this zero point already lies near room temperature. By substituting
cobalt the maximum in the po versus T curve for polycrystalline magnetite
specimens is also shifted towards a higher temperature (see Fig. 48.5).
The zero points in the crystal anisotropy for varying cobalt content are found
at the same temperatures as the maxima in the uo versus T curves. The peak
value of po is found to decrease the more the composition differs from
Fe304; this may be related to the fact that there are two anisotropies of
opposite sign, the absolute values of which are greater the higher is the
temperature of the zero point for the crystal anisotropy of the mixed ferrite.
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In order to make certain that that the anisotropy in each part of the speci-
men is zero at the same temperature, it is necessary to ensure a uniform
distribution of the cobalt ions. For equimolar lithium zinc ferrites, Fig.
48.6 gives the initial permeability as a function of temperature for various
cobalt contents [Bu 2]. A pronounced second maximum is seen in these
curves far below the Curie point, and the position of this maximum shifts
with the cobalt content. In this case too, the relatively low value of o in the
maximum will be attributable to chemical inhomogeneities and possibly
to stress and shape anisotropy. Similar results have been reported for lithium
ferrites and nickel-zinc ferrites [Bu 2] and [Bu 3]. Van der Burgt found,
however, that the effect of cobalt substitution on the permeability differs
from one ferrite to another. In other words, one may find that the simple
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relation K;3(8) = (1 — 8) K1(8 = 0) + 8 K1(8 = 1) does not hold at a given
temperature. For instance, where Me stands for the divalent metal ions
Fe and Mn the cobalt content required to make the crystal anisotropy
zero at room temperature appears to be respectively about /4 and 4
times the cobalt content predicted by the above relation [Bu 3].

Manganese-Ferrous Ferrites

Figure 48.7 shows the permeability versus temperature curves of some poly-
crystalline specimens of manganese-ferrous ferrites Mny—,Fe";Fe2O4. Here,
too, a second maximum is found besides the maximum at the Curie point.
The position of this second maximum depends only slightly on the ferrous
content. In the same figure a curve of similar shape (dashed) is shown for a
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Fig. 48.7. Initial permeability of manganese-ferrous ferrites as a function of temperature.
Fully drawn lines for polycrystalline specimens, the dashed curve for a single crystal,
after [En 2].

single crystal with the composition Mny.s5Fez.1504. Measurements on this
single crystal by Enz [En 2] indicate that the second maximum in the curve
is not related to zero points in crystal anisotropy or magnetostriction. It was
found, however, that after demagnetization, the permeability of the single
crystal is very time-dependent. The disaccommodation of this crystal is re-
presented for various temperatures in Fig. 48.8. As a consequence of the
disaccommodation the pg versus T curve also depends on the measuring time.
It is highly probable that the special form of the uo versus T curve, which was
measured in a relatively short time, is connected with the increase in the
disaccommodation rate at higher temperature. In the case of the polycrystal-
line specimens an appreciable disaccommodation is found also, but it is
not yet certain whether this is sufficiently large to explain completely the
additional peak in the po versus T curve.

The manganese-zinc ferrites have a fairly high initial permeability, which
can be further increased by making a ternary ferrite with FegO4; in Fig.
48.9 the saturation magnetostriction A; and the initial permeability po of
such ferrites are plotted as a function of the ferrous concentration at room
temperature. It can be seen that, for a given composition of the ternary
ferrite, As is zero, and that for the same material the greatest value of po
occurs. This result indicates that, in order to obtain very high permeabilities
in ferrites, the magnetostriction must also be made small. The fact that the
maximum in po is found for a certain ferrous content does not necessarily
point to a magnetostriction effect, since it is known [St 4] that an excess of
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divalent oxides above the stoichiometric composition leads to better sinter-
ing, which can also give rise to higher permeabilities.

48.2. FERRITES WITH HEXAGONAL CRYSTAL STRUCTURE

Ferrites having a hexagonal crystal structure and whose ¢ axis is a preferred
direction of magnetization will have an initial permeability of the order of
magnitude of unity if the crystal anisotropy is large (K1 = 108 erg/cm3).
For ferrites where the basal plane is a preferred plane such high values of
K; may be 'accompanied by higher values of permeability as a conse-
quence of rotations of the magnetization in the basal plane; Fig. 48.10 gives
the wo versus T curves for a number of simple compounds of this kind.
These curves show the normal behaviour of an increase in uo with tempera-
ture up to the Curie point. An exception is CosZ, for which there is a sudden
drop in pe at approximately 250 °C, while the Curie point is much higher,
being approximately 400 °C (see Fig. 38.5). The explanation is that, at
250 °C, the first-order crystal anisotropy constant changes sign (see Fig.
39.7). Below 250 °C the compound Co2Z has a preferred plane of magneti-
zation, hence in principle a higher permeability owing to the possibility of
rotations of the magnetization in the basal planes of the crystals. Above
250 °C the material has a preferred direction of magnetization, and the
magnitude of pp is determined by that of Kj, and is therefore small. The
saturation magnetization o, the crystal anisotropy and the initial permeability
of CozZ are plotted together as a function of temperature in Fig. 48.11 in
order to illustrate this relation.
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Fig. 48.10. Initial permeability versus temperature for a number of polycrystalline speci-
mens of simple hexagonal oxides.
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In § 39.1 we saw that, at room temperature, Co2Z has a preferred
plane of magnetization and ZnsZ a preferred direction and that in the
series of mixed crystals Co,Zn;—,Z a change of sign in the crystal anisotropy
occurs at a chemical composition corresponding to about 8 = 0.6, (see
Fig. 39.8). For the other compositions this change of sign will occur at a
different temperature. In the po versus temperature curves of some of these
ferrites one finds therefore a temperature range in which po drops rapidly
with increasing temperature (Fig. 48.12). With T, defined as the temperature
at which g has fallen to half of its peak value, Fig. 48.13 gives this tempera-
ture as a function of the composition parameter 8. In the same figure the
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Fig. 48.13. The Curie temperature T, and the temperature To
at which the initial permeability has dropped to half its maxi-
mum value (see Fig. 48.12) in dependence on the chemical
composition of the ferrites Co zZna-—sZ.

Curie point T¢ is plotted for some of these compounds. For the mixed ferrites
with 8 = 0.65— 2.0 it is evident that the drop in po with increasing tempe-
rature is not caused by the approach to the Curie point but, as in the case
of CozZ, by the change in sign of the first crystal anisotropy constant. For
the two specimens 8 = 0 and & = 0.5 the sharp drop of uo with increasing
temperature is not found. This is in agreement with what is to be expected
by extrapolation of the Ty versus & curve for these ferrites in Fig. 48.13.
Moreover it can be deduced from this figure that, in the case of the specimen
with a composition corresponding to a value of & of approximately 0.5
to 0.6, the anisotropy changes sign at room temperature. This is the same
composition, as follows from direct measurement of the crystal anisotropy;



260 STATIC INITIAL PERMEABILITY [CH. XITI

. CogMgs-sZ S5 /‘\
Ho s=7.o/ X\sdn
T . A\
e
ita V4
pd

\
7 | 2 \
4 —74/ \\ \g

—300 -100 0 100 200 300 400
—_—T { oc)

=~ -  \J

Fig. 48.14. As Fig. 48.12, but now for compounds Co;Mga-sZ.

see Fig. 39.7. In the o versus T curves of some Co,Zns—;Z compounds in
Fig. 48.12 a second maximum occurs, for which no explanation has been
given.

In Fig. 48.14 the initial permeability is plotted against temperature for a
number of specimens from the series Co,Mgz—;Z. As in the series of cobalt-
zinc Z compounds, the sharp drop in uo corresponds here to a transition
from preferred plane to preferred direction. It appears that MgsZ (which
contains no cobalt ions) also has a preferred plane at low temperature
(below —95 °C). The slight drop in uo at high temperature takes place exactly
at the Curie point. Properties corresponding to those mentioned above are
also found in other mixed cobalt Z and cobalt W compounds, since all
simple Z and W compounds, apart from CosZ and CosW, have a preferred
direction of magnetization at room temperature.

§ 49. External Influences on the Permeability

49.1. THE REVERSIBLE PERMEABILITY IN A BIASED STATE

The permeability of a magnetic core measured with a very small field strength
is generally called the reversible (or differential) permeability wrev. When
the core is in the demagnetized state, prev = pmo. In all other cases prev
depends on both the magnetic polarization (magnetization) of the core,
and, owing to hysteresis phenomena, on the sequence of applied biasing
fields which have caused this steady magnetization. The solid curves in
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Fig. 49.1 show prey in dependence on a polarizing field Hp, in the case of
polycrystalline Nio.ssZno.¢aFe204, when the permeability is measured in
a direction parallel to this field. The arrows indicate the cycle of the polarizing
field after demagnetization of the core. The maximum value for prev is
found when H) is approximately equal to Hc; this value differs but little
from po. A magnetic field Hp,, perpendicular to the direction in which the
reversible permeability is measured, reduces the latter less than a field
Hp,,;, parallel to the direction of measurement; this is indicated by the
dashed curves in Fig. 49.1. In the case of fields H, which are large with res-
pect to the internal anisotropy fields of the material, the transversal rever-
sible permeability is given by prev,s — 1 = 47Ms/Hp, . The hyperbola
corresponding to this is the dotted curve in Fig. 49.1, which approaches the
measured curve at high strengths of the transversal polarizing field. To obtain
large variations of permeability with relatively small polarizing fields it is
necessary to polarize parallel to the direction of measurement. For small
variations of permeability, perpendicular biasing is more favourable since
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Fig. 49.1. The reversible permeability of a sample of Nio.36Zno.54Fe204 as a function of the
polarizing field-strength Hp. The solid curves and the broken curves apply to the cases
where measuring and polarizing fields are parallel or perpendicular to each other respec-
tively. The arrows indicate the cycle of the polarizing field. The dotted curve represents
the permeability to be expected in the case where the material has no magnetic anisotropies
and where the permeability is only determined by a biasing field perpendicular to the di-
rection of measurement. The inset shows a part of the curves on an enlarged scale.
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Fig.49.2. The reversible permeability of ferrites NigZni-sFe204
as a function of the polarizing field strength. Measuring field
and polarizing field are mutually parallel.

in that case there are no difficulties from coupling between the two circuits.

In Fig. 49.2, prev for ferrites of the series Ni;Zn;_FesOy is shown for the
case commonly occurring in practice, where the field Hj is parallel to the
direction in which urev is measured. The demagnetized state was taken as
the starting point of the measurement. For H;, = 0 the curve must be parallel
to the H axis, because the change in permeability does not depend on whether
the biasing field is parallel or antiparallel to the measuring field.

49.2. THE INFLUENCE OF UNIDIRECTIONAL MECHANICAL STRESS ON
THE INITIAL PERMEABILITY

Owing to the phenomenon of magnetostriction, internal stresses in a ferrite
can influence the permeability. The stress anisotropy, discussed in § 13.2,
will limit the permeability. The influence of stress can be investigated quantita-
tively by applying external uniaxial tensile or compressive stresses to the
ferrite. In the case of ferrites with a negative saturation magnetostriction,
the magnetization will orient itself at right angles to the tensile stress, as
illustrated in Fig. 49.34. The initial permeability 1o measured in the direction
of the tensile stress o,, in the case where the stress anisotropy prevails over
the other anisotropies, is determined by domain rotations, and is related
to the magnitude of the tensile stress according to:

p,— 1 = (47/3)(Ms2/op)|3-1), (large o), (49.1)

in which A-1 is the average of the reciprocal values of the magnetostriction
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Fig. 49.3. Orientation of the Weiss domains in a ferrite bar with negative
magnetostriction; the bar is subjected to a uniaxial tensile stress (a) or a
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uniaxial compressive stress (b).
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constants in the various crystal directions. Equation (49.1) was first derived
for the case of nickel under tensile stress [Be 8]. In the case of the porous
ferrites a factor (d./d)!/® must be added to the right-hand side, d being the
X-ray density and d the apparent density of the ferrite. Fig. 49.4 gives the
initial permeability po of four ferrites as a function of the reciprocal tensile
stress 1/o.. For Nig.36Zng.¢aFe204 with a saturation magnetostriction
—3.7x 10-6 it is found that, before the tensile strength of the ferrite is reached
(this is reached at a tensile stress of approximately 4 kg/mm2), a range of
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Fig. 49.4. Initial permeability in the direction of a homogeneous uniaxial
tensile stress as a function of that stress for four polycrystalline ferrite bars.
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stresses exists in which uo — 1 is inversely proportional to o,, in agreement
with (49.1). From the slope of this straight line it follows that 1/[A-1| =
5.0 10-8, which is in reasonably good agreement with the earlier-mentioned
value of the saturation magnetostriction. The difference between the two
values is, at least partly, due to the different values of the magnetostriction
constants for the various crystallographic directions, as for example indi-
cated in Fig. 35.1 for magnetite. For the nickel-zinc ferrites with a low zinc
concentration (8 = 0.50 and 0.36) the initial permeabilities are small and
the internal anisotropies large. It can be seen from the figure that in this
case the stress anisotropy caused by the greatest tensile stress is not large
enough to predominate, so that a linear relationship between po and 1/a,
cannot be established. The values of the saturation magnetostriction are
—11x10-% and —16x 10-5, which is larger than in the case of the higher
zinc content. It is evident that uo in these ferrites is not determined by stres-
ses. The ferrite Mny.4gZnp.4gsFeg.0aFea04 has in fact a small internal ani-
sotropy and therefore a high o, but no linear relationship is found to exist
for this ferrite between po and 1/e, since the magnetostriction in this case is
exceptionally small, |Xs| <C 10-6; this means here, then, that tensile stresses
larger than the tensile strength are necessary in order to obtain a predomi-
nating homogeneous stress anisotropy.

When a uniaxial compressive stress is exerted on ferrites having a negative
magnetostriction, the magnetization will orient itself parallel to the compres-
sive stress and a Weiss-domain distribution will arise as in Fig. 49.3b.
The change in the initial permeability of a polycrystalline specimen on which
a small, homogeneous mechanical compressive or tensile stress is exerted,
is given for the case where po is determined only by domain rotations, by
the expression:

g, — 1= (o— DI1 + 0.0722505(po — 1)/M,2], (small o,). (49.2)
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In this expression, o, must be taken negative in the case of pressure. A small
compressive stress raises the initial permeability of ferrites with negative
magnetostriction. For greater compressive stresses the initial permeability
again becomes smaller. In Fig.49.5the initial permeability of Nio.5Zno.5Fe204
is plotted as a function of an externally applied tensile or compressive stress
[Ra 4); it shows clearly the slight increase in po with low pressures.

In the case of ferrites having positive saturation magnetostriction, what
is said above for tensile stress applies for compressive stress and vice versa.

49.3. THE INITIAL PERMEABILITY AS DEPENDENT ON THE METHOD OF
DEMAGNETIZATION

A ferromagnetic material can be demagnetized in two different ways.
The ferromagnetic core can either be heated to a temperature above the
Curie point and then cooled slowly to room temperature, or it can be sub-
jected to an alternating magnetic field the amplitude of which decreases
monotonically to zero. Using the latter method of demagnetization, the
direction of the demagnetizing field can also be varied with respect to the
direction of the field with which the permeability is measured. Above the
broken line in Table 49.1 some results are given of investigations carried
out by Rathenau and Fast [Ra 5] into the influence of the method of de-
magnetization on the magnitude of the initial permeability in the case of
Nio.5Zno.sFe2Oy; it is probable that their results hold, at Jeast qualitatively,
for other kinds of sintered ferrites also. The fact that, after cooling from
the Curie point, the initial permeability is greater than after demagnetizing
by an alternating field at room temperature may, according to (15.4), be
due to the increase of the number of domain walls at higher temperature.

TABLE 49.1

THE INITIAL PERMEABILITY AT ROOM TEMPERATURE OF FERRITE BARS (Nig.;Zng.;Fe;00
AFTER DIFFERENT METHODS OF DEMAGNETIZATION. DATA ON METALLIC NICKEL BARS ARE
GIVEN FOR COMPARISON. VALUES AT ROOM TEMPERATURE, AFTER [Ra 5].

Sintering temperature Metallic
Method of demagnetization of the ferrite nickel
1230 °C 1330 °C (Sn 4}
a) Heating above Curie point (265 °C) 400 380 600
b) Alternating field with monotonically
decreasing amplitude. Measuring field
parallel to demagnetizing field. 284 300 280
¢) Demagnetization as under a) or b) fol-
lowed by mechanical shocks until a
stable value is reached 252 258 220
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Some of these additional walls may persist at room temperature [Ra 6],
so that the difference between the a and b values in Table 49.1 should be
regarded as a difference in the contribution made by reversible domain wall
displacements to the initial permeability. The influence of the direction of
the demagnetizing field with respect to the measuring field on the magnitude
of the initial permeability can be seen from Table 49.11. It appears that the
largest values for the initial permeability are obtained when the measuring
and demagnetizing directions are parallel. This is again explained by assum-
ing that alternating current demagnetization gives rise to domain walls in
a particular direction, which can make a special contribution to the reversible
magnetization in this direction.

TABLE 49.11

THE INITIAL PERMEABILITY OF A TUBE OF Nig.;Zng.;Fe;04 IN DEPENDENCE ON THE DIRECTION
OF MEASUREMENT WITH RESPECT TO THE DEMAGNETIZING DIRECTION. SINCE IT IS DIFFI-
CULT TO DETERMINE EXACTLY THE DEMAGNETIZING COEFFICIENT IN THE DIRECTION OF
THE TUBE AXIS, THE VALUES (d) AND (a) HAVE BEEN EQUALIZED, AFTER [Ra 5].

After prior demagnetization along the
Measuring direction circumference of
the tube axis of the tube
Along the circumference 185 (a) 167 (b)
Along the axis 167 (¢) 185 (d)

49.4. THE STABILITY OF THE INITIAL PERMEABILITY

It is important to know whether the initial permeability of a ferrite core,
after having been demagnetized by an alternating field, remains constant
for a long time, and what external perturbations can influence it. A change
in the initial permeability with time, without any external cause, is called
disaccommodation, as already mentioned (see Fig. 48.8). The initial permea-
bility of a core can be permanently changed by the application of a transient
mechanical deformation, for instance as a result of bending or dropping;
this is known as shock effect.

Disaccommodation

The phenomenon of disaccommodation in ferrites has been described by
Snoek [Sn 3]. It is found particularly in manganese-zinc ferrites containing
an excess of Fe;O3 and which are fired in an oxidizing atmosphere.
Fig. 49.6 gives a result which is always found with ferrites of this kind,
but for which the explanation is as yet unknown. At each temperature there
exists a kind of spectrum of relaxation times. The relaxation time becomes
longer at lower temperature. After demagnetization the same variation of yo
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Fig. 49.6. Initial permeability wo versus (the logarithm of) time
at two different temperatures for a ferrite with spinel structure
and molar composition 23.5% MnO, 22.5% ZnO and 549,
Fe203, after [Sn 3).

with time is always measured. When these ferrites are fired in a reducing
atmosphere, for example in nitrogen, mixed crystals of manganese-zinc-
ferrous ferrites are produced which often show little or no disaccommodation.
In the case of manganese ferrite or manganese-zinc ferrite without excess
iron for example, disaccommodation is absent at room temperature, just
as in the case of nickel-zinc ferrites with a surplus or deficiency of FezOs.
An indication of disaccommodation of some significance has been found
at —196 °C in a nickel-zinc ferrite fired in an oxidizing atmosphere. In 15
minutes the initial permeability at —196 °C was found to drop by about
5%. Exceptionally high disaccommodation occurs in a single crystal of
Mno.s5F62.1504; see Fig. 48.8.

Shock Effect

Sensitivity of the initial permeability to shock is found mainly in those
ferrites which combine a high magnetostriction with a high value of o,
in which case mechanical stresses can cause substantial changes in the Weiss
domain structure of the ferrite core. Rathenau and Fast [Ra 5] found that,
when nickel-zinc ferrites with spinel structure were subjected to shocks, the
in itial permeability steadily decreased and reached a final value which was
independent of the method of demagnetization; see for instance Table
49.1 below the dashed line. The manganese-zinc ferrites are fairly insen-
sitive to shocks.



CHAPTER XIV

FREQUENCY-DEPENDENCE OF
THE INITIAL PERMEABILITY

§ 50. The Magnetic Spectrum of Ferrites with Spinel Structure
50.1. DISPERSION FREQUENCY

Although, in many applications of ferrites, eddy currents are negligible up to
the highes: frequencies, the initial permeability of these substances is
nevertheless dependent on frequency. The dispersion due to dimensional
resonance (see § 29.1) is here left out of consideration.

By the magnetic spectrum of a ferrite we mean the curves which give the
real part ' and the imaginary part p” of the initial permeability as a function
of frequency for the case where the magnetization of the core is so small
that hysteresis may be neglected.

If we know only one of the quantities u’ or u” in the whole frequency
range we can determine the other quantities with the aid of the Kramers-
Kronig equations (23.3), so that in principle it is sufficient to measure one
curve. In practice, both quantities are measured in a limited frequency
range.

The magnetic spectra up to f= 10,000 Mc/s of a number of ferrites
with spinel structure from the series of chemical compositions Ni,Zn;_,
Fez04 is given in Fig. 50.1. The general characteristic of the spectra is that .’
remains constant in a certain frequency range, while at higher frequencies,
after a small rise, it drops fairly rapidly to a very small value. There always
exists a frequency above which u’ < 1. From this initial rise of u’ with
frequency, and from the fact that the susceptibility becomes negative, it
follows that the dispersion is caused, it least in part, by resonance pheno-
mena. Owing to the logarithmic scale, the maximum in the u’ curves of the
figure is not so striking, although on a linear scale it is in many cases very
pronounced. The losses indicated by the u'* curves are maximum at the
frequency at which p’ has fallen to approximately half the static value. The
p’’ curve is very asymmetrical with a large tail towards the high frequencies.
For relaxation processes d log p”/d log f > 1.

The peak of the loss curve appears at a lower frequency the higher is the
static initial permeability po, which means that high-permeability ferrites
can be used as cores in high-quality coils only in a small frequency range.
This relationship was explained by Snoek [Sn 1] in 1948 by means of ferro-
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magnetic resonance in the anisotropy field H4. Snoek assumed that the
magnetization in very small fields is the result of domain rotations, the
magnetization in each domain being bound to a preferred direction by an
effective anisotropy field HA. In order to calculate the resonance frequency
we shall use the picture of § 18.1, according to which the grains or other re-
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Fig. 50.1. Frequency dependence of the real and the imaginary parts
of the initial permeability, u” and u’* repsectively, for polycrystalline
specimens of ferrites having chemical compositions which are deter-
mined by the different values of the parameter 3 in the formula
NisZn1-8Fea04. Note the scale shift by a factor of 10 between the u’
and the p” scale.

gions with a regular Weiss domain structure are represented by ellipsoids.
In the case of high-permeability materials the demagnetization of these
regions is not effective, and they are comparable with ellipsoids imbedded
in a material having a susceptibility x. The effective demagnetization coef-
ficients are then
N

1+ @r—N)x
For small N this expression reduces to N/p which is small at low frequencies.
We may then assume in this case that, according to (47.3), po is given by:

po— 1 = (8x/3)Ms/HA. (50.2)

Nett = (50.1)
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Under the same conditions ferromagnetic resonance will occur, beginning
at a frequency:

wp = yHA (50.3)

for regions in which the alternating field has a component perpendicular
to the domain boundaries. In that case practically no demagnetization occurs
at the domain boundaries, but only at the edges of the ellipsoid which, ac-
cording to (50.1), is again reduced by its surroundings. Thus, an important
part of the material will resonate at a frequency given by (50.3), whereas
for the rest of the material the resonance frequency will be appreciably
raised, since the poles on the domain boundaries are not neutralized by the
surroundings. We may expect, then, a maximum in the losses whose frequency,

TABLE 50.1

THE RELATION BETWEEN THE MAGNITUDE OF THE INITIAL PERMEABILITY 19 AND THE FRE-
QUENCY (fexp AT WHICH "’ IS AT MAXIMUM, FOR VARIOUS FERRITES WITH SPINEL STRUC-
TURE. THE LAST COLUMN BUT ONE GIVES THE RATIO BETWEEN THE MEASURED DISPERSION
FREQUENCY AND THE RESONANCE FREQUENCY CALCULATED ACCORDING TO (504)

. Porosity, Ms | (fdexp |B)po-D){Errexp Figure
Ferrite uo
P gauss Mc/s vMs or Ref
Nio.30Zno.70Fe204 0.10 | 3800 182 0.5 0.4 50.1
Nio.g6Zno.¢4Fe204 0.08 640 292 5.5 0.5 »s
Nig.50Zno.s0Fe204 0.15 240 332 15 0.5 '
Nio.gaZne.36Fe204 0.22 85 321 50 0.5 N
Nio.20Zno.s0Fe204 0.24 44 283 80 0.5 »s
NiFe204 0.25 12 197 250 0.6 .
NiFe204 0.24 13 205 200 0.5 50.4
NiFe204 0.25 7.7 196 450 0.7 '
NiFe20q 0.36 4.5 168 700 0.6 »
NiFe204 0.38 2.3 162 1500 0.5 "
NiFe204 0.43 1.7 149 2000 0.4 .
MgFesO4 0.43 9 69 80 0.4 —
Mgo.sZng.5Fes04 0.23 120 190 30 0.8 —
Mgo.97Fe6T03 Fe204 0.06 36 183 20 0.2 Ra2
Mgo.s1Fe ;gFez04 0.21 23 123 50 0.4 »
Mno.sZno.q,FeEl Fe204 0.10 |4300 350 1.0 0.5 —
Mno.4sZno.47FC(1)T05 FeoO4 0.04 1760 266 1.5 0.4 J—
Mno.7Zno.2Fej; Fe204 0.06 800 407 5 0.4 —
Lio.sFe2.504 0.08 33 285 50 0.2 —
Lig.2Zno.sFe2.204 0.1 250 293 20 0.7 —
Lig.sFe1.0Cr1.504 0.2 1.35 9 500 0.8 —
Cuo.4Znp.6Fe202 0.14 150 206 18 0.6 —
Nio.26C00.16Zn0o.58FeaO4 0.19 17 370 400 0.7 —
yFe203 0.6 2.8 123 1200 0.4 BI3
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according to (50.2) and (50.3), is related with the static initial permeability
according to:

flo— 1) =5 vM, (50.4)

where M; is the saturation magnetization per cm3 measured for the porous
material. This equation applies very well to many ferrites with spinel struc-
ture, as appears from Table 50.1. The last but one column of this table gives
the ratio between the experimentally found frequency at which u'’ is at
maximum (fr)exp and the resonance frequency determined with (50.4).
The relation (50.4) can also be tested by measuring the spectrum of a ferrite
with a very different value of M, as for example Lig.5Fe1.0Cr1.504, for
which M, = 9 gauss (see for a similar material Fig. 9.2). The spectrum of
this ferrite is given in Fig. 50.2. To an initial permeability uo — 1 = 0.35
corresponds according to (50.4), a resonance frequency of 600 Mc/s, which
is what is approximately found. In order to make a ferrite with spinel struc-
ture having the highest possible initial permeability up to a high frequency,
the saturation magnetization according to this picture must be as high as
possible. For spinels containing cobalt it is found [Sc 1] that (fy)exp can be
approximately a factor of 2 higher than for spinels with corresponding values
of po and M;, but which contain no cobalt. The unsatisfactory aspect of
the situation, however, is that the initial permeability of, say, sintered nickel
ferrite is greater than one might expect from the magnitude of the crystal
anisotropy constant Ki, if po is determined by domain rotations only.
For single crystals of NiFezOy it is found (see Table 34.1) that K1 = —62,000
erg/cm3. If we neglect mutual coupling between the magnetization in the
different crystals and also demagnetizing effects, the magnitude of the ini-
tial permeability for the specimen from Fig. 50.1, in the case where this is
due solely to simultaneous rotations of the spins, is found to be:

po— 1 = 2n(dg/d)Ms2/|Ky| = 2m(5.38/4.0)1972/62000 = 5.3.

10
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Fig. 50.2. Magnetic spectrum of gy
Lio.sFe1.0Cr1.502. The dispersion
. . . TN
frequency is appreciably lower than 05 ©-1
is usually found at this low.value N
of the initial permeability, owing A
to the exceptionally low saturation /| N
magnetization of this ferrite (o = 0 & oA S
2.2 gauss cm3/g and d = 4.0 g/cm3), 1l |
0 2 5 000 2
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The measured susceptibility is thus a factor of 2 larger than may be expected
for rotation processes alone.

This discrepancy is more serious still in the case of a number of magne-
sium-ferrites investigated by Rado et al. [Ra 2]. The magnetic spectrum
was measured on sintered specimens and the crystal anisotropy, Ki, deter-
mined with the aid of torsion measurements on single crystals from the same
range of compositions. An example of the nature of the spectra of these
ferrites is reproduced in Fig. 50.3. In all cases, two dispersion regions are
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found. The low-frequency dispersion for these ferrites, too, satisfies Snoek’s
relation. From the measured crystal-anisotropy constants, however, it
follows that a possible initial permeability due to rotations is approximately
a factor of six smaller than the value found by experiment for wo. The reso-
nance frequency fit determined from the magnitude of Ki is higher by
an even larger factor than the experimentally found main dispersion fre-
quency (see Table 50.1I).

Since the second dispersion region found by Rado et al. [Ra 7] in a large
number of ferrites has a dispersion frequency (fr)exp in the microwave range,
which is of the same order of magnitude as the resonance frequency deter-
mined from K, this is attributed to ferromagnetic resonance. Consequently,
there remains as the cause of the low-frequency dispersion, according to
these authors, only the domain wall resonance. The fact that in many
sintered ferrites only one dispersion range is observed would then be due
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to the coincidence of both dispersion ranges. If this is a resonance of domain
walls, we can apply to it the theory from § 24.3 and ascertain whether the
resonance frequency theoretically to be expected for these ferrites is in agree-
ment with the value found by experiment. A combination of the equations
(24.12) and (24.13) gives for the resonance frequency of domain walls:

(ro— DE - fr = c(Su/DEyMs, (50.5)

where ¢ is a constant of the order of magnitude of unity, depending on
the kind of walls. If we take for the distance / between domain walls the
distance determined by (14.4), which is equal at maximum to 10 microns,
we find for the magnesium ferrites mentioned in Table 50.1I a domain-wall
resonance of approximately 100 Mc/s, to be compared with the experimental
value of 30 Mc/s. In the right-hand side of (50.5) there is also a variable
quantity (8,/D%, the dependence of which upon K is as K3~3/8 according
to (15.1). Since an increase of K; will give rise to a decrease in po, one ought
to find in reality that for a series of ferrites the product f(ue-1)%, in which
a < %, is proportional to M. The series of NiZn ferrites, however, are found
to satisfy nicely the equation (50.4), for a variation in po by a factor of 300.

For a given chemical composition it is possible to vary the initial permea-
bility by powdering the ferrite, so that each particle consists of one or only
a few Weiss domains. The magnetization process in this case will only take
place via domain rotation. Fig. 50.4 gives an illustration of the change in
the magnetic spectrum when samples with various densities are made
from the same powder of NiFe:0,, using different degrees of sintering
[Br 7]. Compressed powder consisting of particles of 0.5 to 1 micron and
fired at 960 °C results in a sample having a very low initial permeability:
po— 1 = 1.7. The higher the temperature to which the sample is fired the
more this value rises, until for a firing temperature of 1327 °C one obtains
po— 1 = 13. In Fig. 50.4 it can be seen that the rise in permeability is asso-
ciated with a lowering of the main dispersion frequency in the spectrum.
The relation between the measured dispersion frequency and the resonance
frequency to be expected according to (50.4) is given for these ferrites in
Table 50.I. The same agreement is found as when varying the chemical
composition. In a denser specimen (fired to a higher temperature) having a
higher permeability, the dispersion extends towards a much lower frequency
than in a specimen that is very porous. At the high-frequency side of the
dispersion there is not much difference between the spectra of the specimens;
for frequencies higher than about 10* Mc/s the losses in all cases are very
small. If we take as our starting point that in the nickel-ferrite powder with
the smallest grains only domain rotations contribute to uo, and that in the
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denser specimens a contribution is also made by wall displacements, then
for this Jast magnetization process we should expect an additional disper-
sion region. This, however, is not found. The dispersion frequency drops
continuously with increasing density. It is as if o in the less porous specimen
is larger because the rotation of the magnetiztation becomes easier: lowered
porosity results in less internal shape anisotropy, and hence in higher
rotational permeability and a lower ferromagnetic resonance frequency. .
If the density is very high, as in some examples reported [Kr 1], where
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Fig. 50.4. Permeability spectra of incompletely sintered samples of nickel ferrite NiFe2Oa.
The five samples were sintered at progressively higher maximum temperatures in the range
960-1327 °C. The densities d of the samples indicated in the figure should be compared
with an X-ray density d; = 5.38. After [Br 7].
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p = 0.02, wall displacements are presumably the main magnitization pro-
cess at low frequencies.

50.2. WIDTH OF THE DISPERSION REGION

The broadening of the loss curves towards higher frequencies is due to the
fact that the alternating measuring field possesses a component parallel to
the domain walls and also perpendicular to the saturation magnetization.
Consequently, in the case of resonance, as in Fig. 18.3b, poles also appear
on the walls, thereby appreciably increasing the effective demagnetizing
factors and hence the resonance frequency. Moreover, at these frequencies
a large part of the material will be above resonance; this means that the
permeability of the surrounding material will be small and therefore Ny
and N, will not be reduced according to (50.1). This increases the resonance
frequency still further. At very high frequencies the ellipsoid of Fig. 18.35
may be regarded as isolated, so that the largest demagnetizing field to be
expected in the y direction is that for a flat plate, i.e. 4mM;. The highest re-
sonance frequency which, according to this description, will occur in a sin-
tered specimen, is given according to (18.18b) by:

wr,max = Y(H4 + 47TM3). (50.6)

Above this frequency there should be no magnetic losses. For many mag-
netically soft spinels the demagnetizing field is about 4xM; = 4000 gauss,
against which the small anisotropy fields H4 are negligible. In these ferrites,
then, losses due to the Weiss domain structure may be expected up to a
frequency of the order of magnitude of 10¢ Mc/s. For NiFe2O4 the relevant
values are: g = 2.19, H4 = 450 oersteds and 4xM; = 3400 gauss, hence
frsmax = 7400 Mc/s, in reasonably good agreement with what is found
by experiment (see Fig. 50.4).

The fact that the losses are low above the frequency determined by (50.6)
has been illustrated by an experiment carried out by Beljers ez al. [Be 9].
The losses were measured at 9300 Mc/s as a function of temperature on a
nickel-zinc ferrite with spinel structure (molar composition approximately
189 NiO, 32% ZnO and 509, FesOs). Fig. 50.5a gives for this ferrite the
quantity (y/27)4=M; as a function of temperature (this is a frequency
which is proportional to the saturation magnetization M;, and which would
fall to zero at the Curie point, that is at about 200 °C). The same figure
indicates the resonance width 4f of a resonant cavity filled with a bar of
this ferrite and measured at a frequency of 9300 Mc/s. It is found that 4f
also becomes smaller at higher temperature, and at about 60 °C becomes
equal to 4f for the case where the bar is magnetically saturated and thus
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no longer subject to losses due to the Weiss domain structure. Below a
temperature of 60 °C, 47 M; is sufficiently large to be able to cause losses
in the ferrite at 9300 Mc/s, according to (50.6); above 60 °C, 4wM, has
become too small. The anisotropy field H4 is small with respect to 47Mj,.
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Fig. 50.5. High-frequency losses 4f” measured at a frequency of 9300 Mc/s
as a function of temperature for a ferrite in the demagnetized state (drawn
curve), and for the case that the ferrite is magnetically saturated, broken
curve. The saturation magnetization, M,, is also given, expressed in the
quantity (y/2n) - 47 M;.

The figures a) and b) show for two ferrites of different chemical composi-
tions that the losses disappear if (y/27) - 47 M, is smaller than the measur-
ing frequency.



278 FREQUENCY-DEPENDENCE OF INITIAL PERMEABILITY [CH. XIV

The same result, but at different temperature is obtained for a specimen with
a molar composition of approximately 25 % NiO, 25% ZnO and 509 Fe»Og
(see Fig. 50.5b). With this ferrite we again find the losses vanishing at a
temperature at which 4=M; has fallen to the same value as in the case of the
ferrite in Fig. 50.5a. Since the losses in this frequency range arc due to the
Weiss domain structure, they disappear when the material is magnetized.

§ 51. The Magnetic Spectrum of Hexagonal Ferrites with the Basal Plane
as the Preferred Plane of Magnetization

The magnetic spectrum of ferrites with hexagonal crystal structure and
having a preferred plane of magnetization resembles that of the spinels.
One finds, however, for the same value of initial permeability a higher dis-
persion frequency than in the case of spinels. As an example, Fig. 51.1
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Fig. 51.1. The magnetic spectrum of a polycrystalline specimen of CosZ.
For comparison, the spectrum of NiFe2O4 with approximately the same
low-frequency permeability is given.

shows the initial permeability of the compound CosZ plotted as a function
of the frequency. This figure also gives the permeability of the spinel NiFezO4
It can clearly be seen that, although the permeability at low frequency is
approximately equal for both compounds, the dispersion in the case of
CogZ is substantially higher than in the case of the spinel. Corresponding
results are found with many other ferrites with hexagonal crystal structure
and a preferred plane of magnetization. The dispersion may be the result
of ferromagnetic resonance. In these materials the natural ferromagnetic
resonance frequency will be determined by the rotational stiffness of the
magnetization in the preferred plane as well as by the rotational stiffness
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of the magnetization out of the preferred plane. By analogy to (18.14) it
can be derived from (18.10) and is given by:

2mfres = y) HA - HA. (5L1)
According to (11.7) the field H4 is connected with the crystal anisotropy
constants K; and Kz, and can have very high values, as we have seen in
§ 39.1. The field H7 is connected with the crystal anisotropy constant K3,
which is a measure of the stiffness of the rotations in the preferred plane,
or, if K3 is small, then stress anisotropy and shape anisotropy can determine
H4. Assuming that po is due solely to rotations, H4 will be related to po
according to (47.6).

In Table 51.1 the values of the resonance frequency calculated according
to (51.1) are compared with those found directly by experiment. The reso-
nance frequency taken for the experiments is that at which p”’ is maximum.
Contrary to the spinels (see e.g. Fig. 50.1), at this frequency the permeability
' is found to have fallen to half of its value at low frequency. The theoret-
ically determined frequencies, for the case where the dispersion is due to
ferromagnetic resonance, and the experimentally measured frequencies,
differ by the same factor 2 as is found for the spinels. The fields H% in
Table 51.1, which are derived from the magnitude of the initial permeability
of the sintered polycrystalline specimens, are much greater than the equi-

TABLE 51.1

VALUES OF THE DISPERSION FREQUENCY OF HEXAGONAL OXIDES WITH A PREFERRED PLANE
OF MAGNETIZATION, AS CALCULATED WITH (51.1) AND AS FOUND BY EXPERIMENT.

— JSreg in 108 Mc/s
Ferrite ':: lov: 4m M, Hy Hy d‘res t
according to
frequency gauss oersted oersted GL.1) measured
CozZ 11 3350 13,000 112 3.4 1.4
Mg2Y 9 1500 10,000 62 2.2 1.0

valent crystal anisotropy fields H4 which are given in § 39.2 for single crystals
of the same compounds. This indicates that the initial permeability in these
polycrystalline specimens is not primarily limited by the crystal anisotropy
in the preferred plane, but by shape or stress anisotropy. Thus, in the crystal-
oriented samples H4 will be much smaller, causing a decrease of the reso-
nance frequency. We shall return to this subject at the end of this section.

The improvement as regards high-frequency behaviour which these ferri-
tes with a preferred plane of magnetization offer as compared with the ferrites
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with spinel structure can be illustrated by combining equations (47.2) and
(51.1):

Jres(po— 1) = (4/3)y M [y HZHE + 3/ HATHR). (512)

For ferrites with spinel structure the factor between brackets is always equal
to unity, since H4 = Hy, so that for a given value of the initial permeability
the resonance frequency depends only upon M. In the case Hy +# Hj,
the factor between square brackets is greater than unity. At comparable
values of permeability this factor is equal to the ratio of the resonance fre-
quency of a hexagonal ferrite with preferred plane of magnetization and
that of a spinel.

The highest resonance frequency which, according to (18.18b), can occur
in a sintered specimen is:

Wrymax = )/]/47TM3(47TM3 + H‘;), (5].3)

analogous to (50.6). For example, in the series of compositions denoted
by the general formula Co,Zn;—,Z, the factor Hy/H% can be continuously
varied from a high value to the value 1 by changing the chemical composi-
tion. Figure 51.2 shows the magnetic spectrum for some specimens of this
series having a preferred plane of magnetization. The low-frequency value
of the initial permeability increases very little with thezinc content, indicat-
ing that HY is substantially constant, whereas it follows from Fig. 39.5
that H7 is highly dependent on 8. The dispersion frequency, however, changes
considerably; the maximum of the p’’ curve is found respectively at 1400
Mc/s for Coe2Z and at about 200 Mc/s for Cog.¢5Zn;1.35Z, which represents
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Fig. 51.2. Magnetic spectrum of some ferrites from the series CosZna—sZ.
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a change by a factor 7. The saturation magnetizations 4w M, of these ferrites
at room temperature are respectively 3350 and 3720 gauss. The considerable
change in the dispersion frequency with the chemical composition does not
appear to be related to variations in po or 4wMj, but is presumably due to
the change in the anisotropy field Hj. For the specimen 8 = 0.65 the
anisotropy field H4 is of the same order of magnitude as the anisotropy
fields determining po. The particular effect of a preferred plane is then no
longer present in the crystals of this specimen. The dispersion frequency is
therefore equal to that which is found for a spinel with the same initial
permeability and approximately the same saturation magnetization (about
200 Mc/s for NiFe20y,).

Fig. 51.3 shows the magnetic spectra of two specimens of the same com-
pound CosZ. The preparation of the specimens differs only in as much as
the basal planes of the crystals in the specimen with the highest permeability
are oriented mutually parallel owing to the fact that during the pressing of
the sample a rotating magnetic field was applied, as described in § 44. The
result of this crystal orientation is an increase of (uo— 1) from the value
11 for the isotropic specimen to 27 for the crystal-oriented one. A striking
fact revealed by the magnetic spectra is that this appreciable increase in
initial permeability is accompanied by only a slight decrease of the dispersion
frequency. A better comparison of the spectra is possible by dividing the
measured values of u’'— 1 and "’ by the low frequency value of ' — 1. The now
“normalized” spectra for the same specimens are shown in Fig. 51.4, from
which it ca