

4096 x 8 Static **Read Only Memory**

MEMORY PRODUCTS

- . SY2333-2732 EPROM Pin Compatible
- ۰ 4096 x 8 Bit Organization
- e Single +5 Volt Supply
- o Access Time-450ns (max)
- o Totally Static Operation
- Completely TTL Compatible

- SY2332-2532 EPROM Pin Compatible a
- Three-State Outputs for Wire-OR Expansion
- **Two Programmable Chip Selects**
- 2708/2716/2532/2732 EPROMs Accepted 0 as Program Data Inputs

The SY2332/3 high performance read only memory is organized 4096 words by 8 bits with access times of less than 450 ns. This ROM is designed to be compatible with all microprocessor and similar applications where high performance. large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels with a minimum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

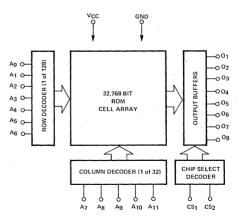
PIN CONFIGURATIONS

	SY2332				SY2333		
A7 🗆		24	L Vcc	A7 [24	hvcc
A6 🗆	2	23		A6 🗆	2	23	
A5 🗌	3 .	22	□ A9	A ₅	3	22	
A4 🗆	4	21	□cs₂	A4 🗆	4	21	□ A ₁₁
A3 🗆	5	20	□cs₁	A3 🗆	5	20	□cs₁
A2 🗆	6	19	A10	A2 []	6	19	A10
A1 🗆	7	18	D A11	A1	7	18	□cs₂
A0 🗆	8	17	08	A0 🗆	8	17	0,
01	9	16	07	00□	9	16	□o₀
O₂ [10	15	D06	01	10	15	⊡o₅
0₃ [11	14] o₅	o₂⊑	11	14	⊒o₄
GND 🗌	12	13	⊐o₄	GND 🗌	12	13	□ 0₃

ORDERING INFORMATION

Order	Package	Access	Temperature
Number	Type	Time	Range
SYD2333	Cerdip	450ns	0°C to +70°C
SYP2333	Plastic	450ns	0°C to +70°C
SYD2332	Cerdip	450ns	0°C to +70°C
SYP2332	Plastic	450ns	0°C to +70°C

A custom number will be assigned by Synertek.


The SY2332/3 operates totally asynchronously. No clock input is required. The two programmable Chip Select inputs allow four 32K ROMs to be OR-tied

without external decoding. Both devices offer three-

state output buffers for memory expansion.

Designed to replace either the 2732 or 2532 32K EPROMs, the SY2332/3 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Ambient Operating Temperature	-10°C to +85°C
Storage Temperature	-65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
Applied Output Voltage	-0.5V to +7.0V
Applied Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

COMMENT*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Vон	Output HIGH Voltage	2.4	Vcc	Volts	V _{CC} = 4.75V, I _{OH} = -200µA
VOL	Output LOW Voltage		0.4	Volts	V _{CC} = 4.75V, I _{OL} = 2.1 mA
VIH	Input HIGH Voltage	2.0	Vcc	Volts	
VIL	Input LOW Voltage	-0.5	0.8	Volts	See Note 1
LI	Input Load Current		10	μA	V _{CC} = 5.25V, 0V ≤V _{IN} ≤5.25V
LO	Output Leakage Current		10	μA	Chip Deselected
					$V_{OUT} = +0.4 V$ to V_{CC}
ICC	Power Supply Current		100	mA	Output Unloaded, Chip Enabled
					$V_{CC} = 5.25V, V_{IN} = V_{CC}$

Note 1: Input levels that swing more negative than -0.5V will be clamped and may cause damage to the device.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$ (unless otherwise specified)

Cumbal	Dementer	SY2332/33		Units	Tart Oraclitican	
Symbol	Parameter	Min.	Max.	Units	Test Conditions	
tACC	Address Access Time		450	ns	Output load: 1 TTL load and 100pF	
tCO	Chip Select Delay		150	ns	Input Pulse Levels: 0.8 to 2.4V	
^t DF	Chip Deselect Delay		150	ns	Input transition time: 20ns	
tOH	Previous Data Valid After	20		ns	Timing reference levels:	
	Address Change Delay				Input: 1.5V	
					Output: 0.8V and 2.0V	


CAPACITANCE

 $t_A = 25^{\circ}C$, f = 1.0MHz, See Note 2

Symbol	Parameter	Min.	Max.	Units	Test Conditions
CI	Input Capacitance		7	pF	All pins except pin under
с _О	Output Capacitance		10	рF	test tied to AC ground

Note 2: This parameter is periodically sampled and is not 100% tested.

TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

All Synertek read only memories utilize computer aided techniques to manufacture and test custom bit patterns. The custom bit pattern and address information is supplied on standard 80 column computer cards or 1" wide paper tape.

CARD FORMAT

All addresses and related output patterns must be completely defined. Each deck of cards defining a specific ROM bit pattern consists of 1) four Title Cards and 2) address and bit pattern Data Cards. Positive logic is generally used on all input cards: a logic "1" is the most positive or HIGH level, and a logic "0" is the most negative or LOW level. Synertek can also accept ROM data in other formats, compatible with most microprocessors and PROMs. Consult your Synertek representative for details.

TITLE CARDS

A set of four Title Cards should accompany each data deck. These cards give our computer programs additional information necessary to accurately produce high density ROMs. These four Title Cards must contain the following information:

NICORNAL TION

.....

	COLUMN I	NFORMATION
First Card		part number part number (punch
Second Card	1-30 Customer	contact (name)
	31-50 Customer	telephone number
Third Card	1-6 Leave blar	nk – pattern number to
	<u> </u>	d by Synertek
		chip select logic level (if
Fourth Card		
		or NEGATIVE LOGIC."
	either "V (manufact approval o by Synert NOT NE	e verification code; punch 'ERIFICATION HOLD'' uring starts after customer f bit pattern data supplied ek) or "VERIFICATION EDED'' (manufacturing nediately upon receipt of card deck)
Fourth Card	 30 CS2/CS2 d LOW select HIGH select DON'T CA 31 CS1/CS1 CA 31 Data Form in column 15-28 Logic For LOGIC" of 35-37 Truth table either "V (manufact approval o by Synert NOT NE starts imm 	chip select logic level (i cts chip, punch "0"; i tets chip, punch "1"; i ARE, punch "2" hip select logic level. hat. Punch "Intel" starting one. "mat; punch "POSITIVI or NEGATIVE LOGIC. e verification code; puncl "ERIFICATION HOLD uring starts after custome f bit pattern data supplie ek) or "VERIFICATION EDED" (manufacturin hediately upon receipt o

INTEL DATA CARD FORMAT

Output data is punched as either a "P" or an "N"; a "P" is defined as a HIGH and an "N" is defined as a LOW. Output 8 (Og or O₇) is the MSB and Output 1 (O₁ or O₀) is the LSB. The four Title Cards listed above must accompany the Intel card deck.

COLUMN INFORMATION

Data Cards	1-5	Punch the 5-digit decimal equivalent of the binary coded address which begins each card. This is the inital input address. The address is right justified, i.e. 00000, 00008, 00016, etc.

- 7-14 Output data (MSB-LSB) for initial input address.
- 16-23 Output data for initial input address +1
- 25-32 Output data for initial input address +2

34-41	Output data for initial input address +3
43-50	Output data for initial input address +4
52-59	Output data for initial input address +5
61-68	Output data for initial input address +6
70-77	Output data for initial input address +7
79-80	ROM pattern number (may be left
	blank)

INTEL PAPER TAPE FORMAT

The paper tape which should be used is 1" wide paper tape using 7 or 8 bit ASCII code, such as a model 33 ASR teletype produces.

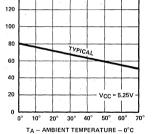
BPNF Format

The format requirements are as follows:

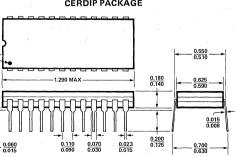
- All word fields are to be punched in consecutive order, starting with word field Ø (all addresses low). There must be exactly N word fields for the N x 8 ROM organization.
- Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F for the N x 8 organization.

NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F must be rubbed out. Within the word field, a P results in a high tape level output, and an N results in a low level output.

- Preceding the first word field and following the last word field, there must be a leader/trailer length of at least 25 characters. This should consist of rubout punches (letter key for Telex tapes)
- 4. Between word fields, comments not containing B's or F's may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc. are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
- Included in the tape before the leader should be the customer's complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
- MSB and LSB are the most and least significant bit of the device outputs. Refer to the data sheet for the pin numbers.


HEXADECIMAL PROGRAM TAPE FORMAT

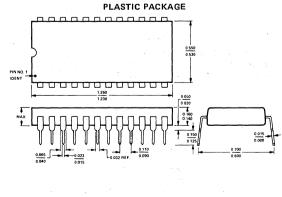
The hexadecimal tape format used by the INTELLEC 8 system is a modified memory image, blocked into discrete records. Each record contains record length, record type, memory address, and checksum information in addition to data. A frame by frame description is as follows:


Frame 0 Record mark. Signals the start of a record. The ASCII character colon (":" HEX 3A) is used as the record mark. Frames 1, 2 Record length. Two ASCII characters (0-9, A-F) representing a hexadecimal number in the range 0 to 'FF' (0 to 255). This is the count of the actual data bytes in the record type or checksum. A record length of 0 indicates end of file. Frames 3 to 6 Load Address. Four ASCII characters that represent the initial memory will be loaded. The first data byte is stored in the location pointed to by the load address, succeeding data bytes are loaded into ascending addresses.

SY2332/33

Frames 7, 8	Record type. Two ASCII characters. Currently all records are type 0, this	ing all carries out of an 8-bit sum, then add the checksum, the result is zero.			
Frames 9 to 9+2* (Record Length) –1	field is reserved for future expansion. Data. Each 8 bit memory word is repre- sented by two frames containing the	Example: If memory locations 1 through 3 contain 53F8E the format of the hex file produced when these locations a punched is:			
	ASCII characters (0 to 9, A to F) to represent a hexadecimal value 0 to 'FF'	:0300010053F8ECC5			
Frames 9+2* (Record Length) to 9+2* (Record Length) +1	(0 to 255). Checksum. The checksum is the nega- tive of the sum of all 8 bit bytes in the record since the record mark (":") evaluated modulus 256. That is, if you add together all the 8 bit bytes, ignor-	Send bit pattern data to the following special address: Synertek — ROM P.O. Box 552 3050 Coronado Drive Santa Clara, CA 95051			
	TYPICAL CHAR				
700 600 500 1 4400 2 300	TYPICAL	ACCESS TIME VS. SUPPLY VOLTAGE			
200	V _{CC} = 4.75V TA = 25°C 1 TTL LOAD CL = 100pF	200 $T_A = 25^{\circ}C$ 100 $C_L = 100pF$			
0 1	100 200 300 400 500 600 700 CL – pF	3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 VCC - VOLTS			
	RRENT VS. AMBIENT TEMPERATURE	SUPPLY CURRENT VS. SUPPLY VOLTAGE			
140					
100 E 80		100			
	TYPICAL				

ICC = mA


60

40

20

0 L 3.5

4.0 4.5

VCC - VOLTS

TA = 25°C

5.0 5.5 6.0 6.5 7.0

PIN NO. 1 IDENT

5

4096 x 8 Static Read Only Memory

SY2332-3 SY2333-3 MEMORY PRODUCTS

- SY2333-2732 EPROM Pin Compatible
- 4096 x 8 Bit Organization
- Single +5 Volt Supply (±10%)
- Access Time-300ns (max)
- Totally Static Operation
- Completely TTL Compatible

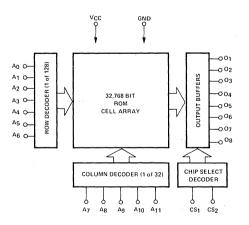
The SY2332-3 and SY2333-3 high performance read only memories are organized 4096 words by 8 bits with access times of less than 300 ns. They are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. These devices offer TTL input and output levels with a minimum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

PIN CONFIGURATIONS

	SY2332-3			SY2333-	3	
A7 🗆	10 24	b vcc	A7C	10	24	□v _{cc}
A6 🗆	2 23	🗆 A8	A ₆	2 .	23	DA8
A5 🗌	3 22	🗋 A9	A5 🗆	3	22	□ A ₉
A4 🗌	4 21	□cs₂	A4 C	4	21	
A3 🗆	5 20	□cs₁	A3C	5	20	□cs₁
A2 🗆	6 19	A10	A ₂	6	19	□ A ₁₀
A1	7 18	🗆 A11	A1	7	18	□cs₂
A ₀	8 17	□ 08	A0 [8	17	0 7
01	9 1 6	07	0₀ [9	16	0 ₆
0₂ [10 15	06	01	10	15	□ 0₅
03	11 14	05	0 ₂ [11	14	□o₄
GND	12 13	□ 0₄	GND 🗌	12	13	□ 0₃

ORDERING INFORMATION

Order	Package	Access	Temperature
Number	Type	Time	Range
SYC2333-3	Ceramic	300ns	0°C to +70°C
SYP2333-3	Plastic	300ns	0°C to +70°C
SYC2332-3	Ceramic	300ns	0°C to +70°C
SYP2332-3	Plastic	300ns	0°C to +70°C


A custom number will be assigned by Synertek.

- SY2332-2716 EPROM Pin Compatible
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- 2708/2716/2732 EPROMs Accepted as Program Data Inputs

The SY2332-3 and SY2333-3 operate totally asynchronously. No clock input is required. The two programmable Chip Select inputs allow four 32K ROMs to be OR-tied without external decoding. Both devices offer three-state output buffers for memory expansion.

Designed to replace 2716 or 2732 32K EPROMs, the SY2332-3 and SY2333-3 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

BLOCK DIAGRAM

2-19

ABSOLUTE MAXIMUM RATINGS*

Ambient Operating Temperature	$-10^{\circ}C$ to $+80^{\circ}C$
Storage Temperature	-65° C to $+150^{\circ}$ C
Supply Voltage to Ground Potential	-0.5V to +7.0V
Applied Output Voltage	-0.5V to +7.0V
Applied Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

COMMENT*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$ (unless otherwise specified)

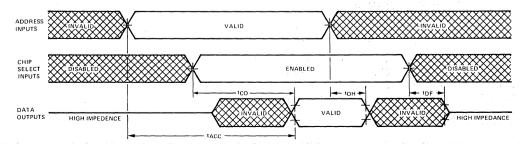
Symbol	Parameter	Min.	Max.	Units	Test Conditions
Vон	Output HIGH Voltage	2.4	Vcc	Volts	$V_{CC} = 4.5V, I_{OH} = -400\mu A$
VOL	Output LOW Voltage		0.4	Volts	V _{CC} = 4.5V, I _{OL} = 2.1 mA
ViH	Input HIGH Voltage	2.0	Vcc	Volts	
VIL	Input LOW Voltage	-0.5	0.8	Volts	See Note 1
ILI	Input Load Current		10	μA	$V_{CC} = 5.5V, 0V \le V_{IN} \le 5.5V$
LO	Output Leakage Current		10	μA	Chip Deselected
					$V_{OUT} = +0.4 V$ to V_{CC}
ICC	Power Supply Current		100	mA	Output Unloaded, Chip Enabled
	and the second				$V_{CC} = 5.5V, V_{IN} = V_{CC}$

Note 1: Input levels that swing more negative than -0.5V will be clamped and may cause damage to the device.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter -	SY2332-3 and SY2333-3		Units	Test Or editions
		Min.	Max.	Units	Test Conditions
tACC	Address Access Time		300	ns	Output load: 1 TTL load
tCO	Chip Select Delay		100	ns	and 100pF
^t DF	Chip Deselect Delay		100	ns	Input transition time: 20ns
tOH	Previous Data Valid After	20		ns	Timing reference levels:
	Address Change Delay			1.	Input: 1.5V
				1	Output: 0.8V and 2.0V


CAPACITANCE

 $t_A = 25^{\circ}C$, f = 1.0MHz, See Note 2

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Cl	Input Capacitance		7	рF	All pins except pin under
CO	Output Capacitance	A CARLER AND A CAR	10	рF	test tied to AC ground

Note 2: This parameter is periodically sampled and is not 100% tested.

TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

All Synertek read only memories utilize computer aided techniques to manufacture and test custom bit patterns. The custom bit pattern and address information is supplied on standard 80 column computer cards or 1" wide paper tape.

CARD FORMAT

All addresses and related output patterns must be completely defined. Each deck of cards defining a specific ROM bit pattern consists of 1) four Title Cards and 2) address and bit pattern Data Cards. Positive logic is generally used on all input cards: a logic "1" is the most positive or HIGH level, and a logic "0" is the most negative or LOW level. Synertek can also accept ROM data in other formats, compatible with most microprocessors and PROMs. Consult your Synertek representative for details.

TITLE CARDS

A set of four Title Cards should accompany each data deck. These cards give our computer programs additional information necessary to accurately produce high density ROMs. These four Title Cards must contain the following information:

	COLUMN	INFORMATION
First Card	1-30	Customer name
	31-50	Customer part number
	60-72	Synertek part number (punch
		2333 or 2332)
Second Card	1-30	Customer contact (name)
	31-50	Customer telephone number
Third Card	1-6	Leave blank - pattern number to
		be assigned by Synertek
	30	CS2/CS2 chip select logic level (if
		LOW selects chip, punch "0"; if
		HIGH selects chip, punch "1"; if
		DON <u>'T</u> CARE, punch ''2''
	31	CS1/CS1 chip select logic level.
Fourth Card	1-8	Data Format. Punch "Intel" starting
		in column one.
	15-28	Logic Format; punch "POSITIVE
		LOGIC" or NEGATIVE LOGIC."
	35-37	Truth table verification code; punch
		either "VERIFICATION HOLD"
		(manufacturing starts after customer
		approval of bit pattern data supplied
		by Synertek) or "VERIFICATION
		NOT NEEDED" (manufacturing
		starts immediately upon receipt of customer card deck)
		customer card deck)
INTEL DAT	'A CARD	FORMAT

Output data is punched as either a "P" or an "N"; a "P" is defined as a HIGH and an "N" is defined as a LOW. Output 8 (Og or O7) is the MSB and Output 1 (O₁ or O₀) is the LSB.

The four T card deck.	itle Cards	listed above must accompany the Intel
	COLUMN	INFORMATION
Data Cards	1-5	Punch the 5-digit decimal equivalent of the binary coded address which begins each card. This is the inital input address. The address is right justified, i.e. 00000, 00008, 00016, etc.

- 7-14 Output data (MSB-LSB) for initial input address.
- 16-23 Output data for initial input address +1 25-32 Output data for initial input address +2

- 34-41 Output data for initial input address +3
- 43-50 Output data for initial input address +4
- 52-59 Output data for initial input address +5
- 61-68 Output data for initial input address +6
- 70-77 Output data for initial input address +7
 79-80 ROM pattern number (may be left blank)

INTEL PAPER TAPE FORMAT

The paper tape which should be used is 1" wide paper tape using 7 or 8 bit ASCII code, such as a model 33 ASR teletype produces.

BPNF Format

The format requirements are as follows:

- All word fields are to be punched in consecutive order, starting with word field Ø (all addresses low). There must be exactly N word fields for the N x 8 ROM organization.
- Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F for the N x 8 organization.

NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F must be rubbed out. Within the word field, a P results in a high tape level output, and an N results in a low level output.

- Preceding the first word field and following the last word field, there must be a leader/trailer length of at least 25 characters. This should consist of rubout punches (letter key for Telex tapes)
- 4. Between word fields, comments not containing B's or F's may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc. are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
- Included in the tape before the leader should be the customer's complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
- MSB and LSB are the most and least significant bit of the device outputs. Refer to the data sheet for the pin numbers.

HEXADECIMAL PROGRAM TAPE FORMAT

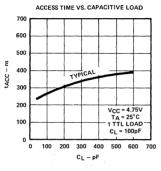
The hexadecimal tape format used by the INTELLEC 8 system is a modified memory image, blocked into discrete records. Each record contains record length, record type, memory address, and checksum information in addition to data. A frame by frame description is as follows:

Frame 0	Record mark. Signals the start of a record. The ASCII character colon (":" HEX 3A) is used as the record mark.
Frames 1, 2	Record length. Two ASCII characters
(0-9, A-F)	representing a hexadecimal number in
	the range 0 to 'FF' (0 to 255). This is
	the count of the actual data bytes in
	the record type or checksum. A record
	length of 0 indicates end of file.
Frames 3 to 6	Load Address. Four ASCII characters
	that represent the initial memory will
	be loaded. The first data byte is stored
	in the location pointed to by the load
	address, succeeding data bytes are
	loaded into ascending addresses.

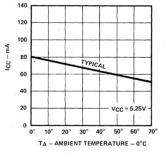
SY2332-3/SY2333-3

Frames 7, 8

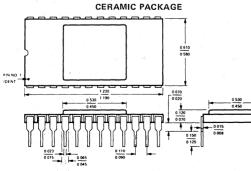
Frames 9 to 9+2* (Record Length) -1


Frames 9+2* (Record Length) to 9+2* (Record Length) +1

ROMs

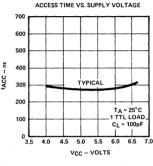

Record type. Two ASCII characters. Currently all records are type 0, this field is reserved for future expansion. Data. Each 8 bit memory word is represented by two frames containing the ASCII characters (0 to 9, A to F) to represent a hexadecimal value 0 to 'FF' (0 to 255).

Checksum. The checksum is the negative of the sum of all 8 bit bytes in the record since the record mark (":") evaluated modulus 256. That is, if you add together all the 8 bit bytes, ignor

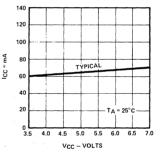

TYPICAL CHARACTERISTICS

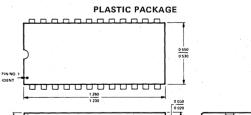
SUPPLY CURRENT VS. AMBIENT TEMPERATURE

PACKAGE DIAGRAMS


ing all carries out of an 8-bit sum, then add the checksum, the result is zero.

Example: If memory locations 1 through 3 contain 53F8EC, the format of the hex file produced when these locations are punched is:


:0300010053F8ECC5


Send bit pattern data to the following special address:

Synertek – ROM P.O. Box 552 3050 Coronado Drive Santa Clara, CA 95051

SUPPLY CURRENT VS. SUPPLY VOLTAGE

-<u>0.023</u>

0.032 RE

0 15

0 700

