]

5
=

5
5
=5
5
5]
=
g
=5
5
5
5|
5
=
Eg
5]
=
5
5
]
5
5]
=
5
5
=
5
5
=
5
5]
5
5]
=

[

5
5
5
5
=

=5
)
=
5
G
5
5]
5
5
]
[
5
5]
G|
5
Eg
=5
=
5

PURT FE

SORCERERS USERS' GROUP
(Toronto)

P.0. Box 1173 Sta. 'B'
Downsview, Ontario,
Canada. M3H 5Y6

W O 3 O B e
1

11. -
12. -

14. -
16. -
17 -

Location :

Wed.June 14
Thur.

NO
Oct.

One block north of Lawrence on the west side of Bathurst.

!

S 0RC

ERER

5
EEEEEEEE
E§E§E§E§E§E§E§E§ESEEE§E§E§E§E§E§E§E§E§E§

TABLE OF CONTENTS

CENEV AL INTEREST

'c’ Librarj Routines #3

June/July

=

[

61 &) 1m0 G 6 b

1982

Tutorial on Standard Rom-Pac Basic

The Prez Zez

Now that we're all ASSEMBLED Part i
Now that we're all ASSEMBLED Part 2

EXMON2 Further GLIMPSES
NEW Monitor Version 2.8

CP/M RELATED

WPP produces CP/M compatible files

RCMP utilities Part 1

HARDWARE TIPS

Part II The SI0 Programming

EXMON2 ORDER FORM
Membership Application

MEETING PLA

Bathurst Heights Library - 7:00 PM

Meeting July
14 Thur.

Wed. Au
Nov. 18

Form.

CE

g. 18
Wed. Dec.

3170 Bathurst St.

Thur. Sept.

15

[SORCERER COMPUTER

' =
g§E§E§E§E§E§E§E§E§E§E§E§E§E§EEEEEEEEE§

The Toronto Sorcerer Users'
Group was founded in the
Spring of 1978, a handful of
willing and eager to learn
members.

This newsletter shall at all
times keep in mind the goal at
its conception. To spread the
seeds of knowledge.

Articles printed in this
newsletter shall be free for
all Sorcerer Users' groups to
reprint or comment on as they
see fit.

Articles submitted for this
newsletter must be in no later
than the beginning of the lst
of every month.

ISSUE

16

[l EI{E [EIE) il [) A))) 0 1 1 1 5 5) 50 1 651) 5 Y) 651) M 1) B L B G161 B 1)

'C' LIBRARY ROUTINES

This is our third
will be looking at

instailment of
two routines

that provide us with

by Dereck Gomes

our 'C' library routines and, this month, we

inverse video of the normal

ascii character set. Routine #:i must first be used to <create Lthe 1inverse
character set of ascii characters which starts at F800H and put them in the
standard and programmable araphics section, then routine #2 wili refer tothem
simoly by adding 128 to the ascii code of the <character requested. This 1is
sufficient for most appiications, but if you wish to use vour oraphics section
for other uses. then you will have to use another method which will involve
creating the inverse <characters on the fly and keeping them in & agraphics
character «cell for the duration of its need: a rather more cumbersome method.

The method listed in these

not have te go through a routine
inverse character; just ask for it.

Note,
routine
invoke

however,
then vour
invascii()

that

again. It is best

ROUTINE #1:

COMMENTS :
resides at
Inverse().
CALLED ROUTINES: None.
USAGE EXAMPLE:

FB00OH and puts it in

invascii{);

invascii{)

3

1

two routines
if vou use a routine that uses Exidv's

graphics section will be re-written and vou

This routine creates an inverse copy of the ascii

/% setup graphics with

is more elegant and faster,
to create

since vou do

it every time vou want to wuse an

cledar screen

will have to
to use your own routine to clear the screen.

character set which

the graphics use by

section for rout:ne

inverse of ascii ¥/

char *graph;
for <(graph = Cxfc00; graph graph++)
i
*graph = ~ (*{ graph - 1024)),

ROUTINE #2.

COMMENTS :
into 1its
routine.
CALLED RGUTINES.
USAGE EXAMPLE.

inverse video equivalent.

None.

putdmai 2, 3,

inverse{ ptr

char ?ptr;

-

char ftemp;

temp =
while ¢
{

ptr,
*ptr)

*ptr =
ptr++;

Xptr ; 0x280:

i

return(temp);

This routine changes a string of ascii
Routine Invascii{)

inverse(

characters pointed to bv (ptr)
is a prereguisite tor Lhis

"this is a string”)),

Page # 2
Tutoriai on Standard Rom-Pac.Easic -- Part 1

For the next few columns I will concentrate on Rom-Pac basic and how to

improve its performance. By the end of the tutorial you will know guite 2 bil
more about what goes on inside that 8 track box.

Quite a few peopie still don't have disks and are wusing a ‘'standard’
Sorcerer - this is who I direct these columns to.

First lets find out more about the internal workings of the Pac. Steve
Dicker and I had spent two vears dissasembling the basic. The following info.
comes from this work. 1 think everyomne would like to find out what the Basic

Work Area holds and does at (i00H. This table is what we consider its functions
{o be:

0100 Jump to CO06B - Basic warm start (PF)

61053 Jump to C7ES - USR jump address (C7E5 is FC ERROR vector)

0i0é Basic 'OUT' function subroutine

0109 Subtraction routine used by division code

0117 3 byte random number seed

0iitA * Unidentified ¥ Looks like flcating peint data

G13A Current random number in floating point

0i3E current 'INP' function routine

@141 Number of nulls+i to send after CR.

0142 Line length - number of characters before auto return.

0143 Last column of cursor - used for screen formatting

0144 Output suppression flag by Control O {(i=suppress output)

0145 Bottom of string space pointer (fills from top down)

0147 Direct/Indirect mode flag (FFFF = direct mode)

0149 Start address for basic text {(default is 01DS5)

(14B Basic line input buffer

018E Current print position {(column # returned by POS(0))

018F Flag: O=Locate named variable, -t=Create entry in table
for named variable

0190 String/numeric operation flag (l=string/0O=numeric)

0191 Holds intermediate value during expression evaluation

0192 Top of string space (space filled from here down)

0194 Address of next available location in LSPT

01%é LSPT - Literal String Pool

0198 - this area holds pertinent info. on locations
019A of strings being used by other routines in
g19cC the process of manipulation.

01%E

01A0 End of LSFT

0iAZ String length - used when printing any string

01A4 String starting location - for printing the string

01Aé Address of where next string should be placed

01A8 Index of last byte executed in current basic statement
G1AA Precsent line number from which we are reading data
O01AC Used by FOR statement ({=FOR in progress,0=No FOR)
01AD Last character input into buffer

0IAE input/Read flag (=0 during INPUT,(>0 during read)

01AF Address of iocation of next command in basic to execute
0iB! Adddress of instruction to be executed when AC hit.
61B3 Current basic line number of line executing

0i1B5 Address of next fuil line to execute {link pointer)
01B? Address of end of proaram/ start of variable area

01BY Address of end of variable area/ start of array area
01BE Address of end of array area/ start of free space

D1BD Address of last used dala operand

01BF Input/Output parameter for USR function and temporary

storage area for basic cailculations
g1C3 ?

01C4 A3CII number output-conversion buffer

01D0 Zero byie to indicate end of ASCII buffer

01D! Temporary storage of MSB of register value

0i1DZ Temporary storage o¢f next M5B of register value
01D4 Null byte marking start of basic program space
01D5 Start of basic text area

Memorv Map of Rom-Pac Version 1.0

C0?75-C0CS Opening message

CGC6-COFS Command look up tale
COF6-CiEC Jump table for basic commands
C1Ef-C23! Function look up jump table
C232-C258 Two letter error messages
C258-CZAZ BCA to be moved to 0i00H
CZA3-CZAS 'ERROR’

CZAA-CZAE ' IN '

C2AF-CZB& ' READY <cr)'

CIB?7-CZBC ' BREAK'

CAiB-CAZD '?REDC FROM 3TART'
CAFF-CBOF ' EXTRA IGNORED'

C21D- Precedent tokens

These are basic command jump addresses

€709 END Cé2E FOR CB34 NEXT CB8BS DATA
E003 BYE Ch43 INPUT CD&F DIM CA72 READ
ceCcC LET €87z GOTO €855 RUN €744 IF
CéDD RESTORE C6é! GOSUB (C8%0 RETURN <C8B? REM
C?67 STOP 0256 GOUT C?26 ON €748 NULL

DZ5C WAIT CFi{F DEF D765 POKE €968 PRINT
€733 CONT €5Cé LIST C80F CLEAR D341 CLGAD
DzC% CSAVE C41A NEW D7AZ ThB(D4EA FN
D34B SFPC(D8C3 THEN CDZF NOT

STEP and TOQ have no snecific routine but are checked on by the FOR routine
itseif.

D& 06 SGN D&CA INT péicC AB3 6103 USR
CEE?® FRE DZ4A INP CF17? PGS D8EBA SGR
D9%§ RNEG D4AB LOG D%08 EXP DAOE cas
DALY SIN DA75 TAN DASA ATN D6FE PEEK
D18B LEN CF9F STRS D223 VAL Di?A ASC
D1iAB CHR$ Di BB LEFT$ DIEB RIGHTS LIFS MIDS

Now 1 will wexplain where and how to utilize some very useful routines
within the basic for vour own basic-machine language combination programs. With
this we will be able tc write extensions to the rom-pac basic, such examples I
will expiain next month.

- To display a basic error message:

LD E,ERROR NUMBER Error numbers (in decimal):

JP C322H 16-B5 2-1D 12-0M 02-5N
32-CN 00-NF 26-08 30-5T
18§-DD 28-L3 10-0V 24-TM
08-FC 06-0D 04-RG 34-UF
14-UL 26-/6G 25-MGC

.

Page # 4

- FINDLINE - C3FA - Search for the basic line having the line number held in DE.
Cn return, BC points to the start of the proper line and HL points to the start

of the following line. The carry and zero flags are set to indicate the fol-
lowing conditions:

Line was found (Z2.C)
Line not found {NZ,NC) - BC points to the start (link

pointer) of a line which has a
line number greater tham that in
DE.
Line not found - end of program reached (Z,NC)

- CR/LF - C9BF - send CR/LF and nulls - set 018E to zero

~ Print message - D015 - print message pointed to by HL and must be terminated
by a null.

- Input line to buffer - C53A - this subroutine accepts input from the current
input device and writes it into the basic line input buffer starting at 014CH.
An automatic CR occurs after 44 characters have been input. The last character

entered is held at location 01ADH. A CR causes the line to be terminated with a
null and a CR/LF to be sent to the output device. HI is left pointing to one
bvte before the input (014BH) and B holds the number of characters input. IF

Control-€ is pressed during input, the subroutine returns with the carry flag
set.

- Copy - €511 - Move the byte pointed to bv HL to the location pointed to bv DE
and includes both pointers. The move 1s repeated untii HL points to & nulil or a
byte equivalent to that held in B upcn entry.

- Translate - C467 - Translates raw input from A5CII codes in buffer to basic
tokens and over-writes the input in the input buffer with the compressed in-
struction. The line is terminated with 3 nulls. On exit, HL=014BH and DE points
to the last byte of the packed command string.

- Test sign - DiF7 - Test the floating point variable in the locations 01BF-01C2
and return with the flags as follows:

Number is sero Z is set

Number is negative 35 is set

Number is positive S is reset

- CMP EC,DE - Dé72 - Compare the floating point number in B,C.D,E with that held

in locations (01BF-01C2(the USR operand space). Returns with; Z set if the
numbers are eaual.

- Capital? - C7BC - Test the character pointed to by HL. If it is not a capital
letter then return wilh the carry flag set.

- Scan Line - CéCD - This is a very important and useful routine. On entrvy HL
points to the line to be scanned. The line must end in a null. A scan is made
until a character other than a space(20H) is found. The subroutine returns with
HL pointing to the character, the character in register A and the flazos set as
foliows:

If a null (00) was found - end of line Z is set

If the character is & digit C is set

If the character is not a digit C is reset

- CMP HL/DE - C574 - Compare the contents of HL to that of DE and:

If HL=DE returns with Z set
If HL{(DE returns with C set
If HL>=DE returns with C reset {(NC)

- ASCII to HEX - C7EA - Converts ASCII code for a number into a two byte hex
number in DE. On entrv HL points to the first character in the number. If the
number exceeds a viaue of 65529, a SN ERROR is printed. IF HL is pointing to a
null on entry, then the subroutine returns with Z set.

- Check Syntax - C57A - this subroutine performs a syntax check. On entry HI
points to a character in the command iine which must be a particular character
for the instruction to have & proper syntax. The character which it must be is
that given by the ASCII code foliowing the CALL SYNTAX instruction. This bvte is
skipped on return from the subroutine and is therefore not read as an instruc-
tion. The process is carried out by the subroutine as follows:

MAIN FROGRAM

XZX CALL C57A
LXX+3 o . character to be compared to (HL)
XXX+ 4 --) control returns here

1) The CALL places the XXX+2 on the stack.

2) Subroutine loads A with char. pointed to by HL

3 Exchange top of stack with HL (HL=XXX+3)

q) Compare char. in A with that pointed to by HL (A comma "," 1in this case)

3) Increment HL (the return address) and put it back on the stack. retrieving
original value of HL.

é) Now return address is XXX+4d

7) Print error message 1f not equal or return

8) On return, the "," is skipped cver.

VARPTR - CDAO - looks for variable name
- if found goto CDFS
- gtherwise goes to CDC1 {(not found)
- variable name is in BC
- on exit, DE voints to variable value (4§
floating point bvtes) if found.

- Reset Pointers - €464 - this sets up a new stack,resets all the basic pointers
and any fiags set by basic subroutines.

- Output character - C585 - sends character to current output device

- Input character - C3B4 - gets character from current input device.

- Get 8 bit argument DZ8D - this subroutine works out an argument pointed to by

HL and returns its value in E.

- Get 16 bit argument - CD54 - this subroutine works out an argument pointed to
by HL and returns the value in DE.

Ex. POKE 4096*A+1,16/5QR(2*D)

CALL CD54 ; get ié6 bit poke localion into DE
FPUSH CE

CALL Ci7A : check for comma

DEFB "

CALL D2aD ; get 8 bit argument into E

LD k.E

POP DE ; uet back poke location
LD (DE) . A ; and poke location with 8 bit #
RET
- Work out numeric argument - CB?F - this differs from the above two routines as

it works out the argument pointed to by HL then places it into the USROP loca-
tion at 01C2 in floating point form - not binary. You then 'CALL C7D0' to

convert this floating point number to binary. It returns with the argument in
DE.

- Work out String Argument - CB93 - This routine will work out a string argument
and set up pointers so you will be able to manipulate that string upon return.
HL points to the start of the argqument in memory. CALL CBY3. The argument has
been worked out and all pointers placed in the LSPT. PUSH HL then CALL Di59.
Upon return HL+1 will point to the string located somewhere in memory. HL will
point to the length of the string byte. Remember to POP KL.

- Get USR arqgument into DE - C7CD - this works out the argument in the USR{X)
statement and places the value in DE. The value must be between -32767 and 32767

- S5ave D,A in Z=USR(0) expression - CFOC - this saves a 16 bit value found in A
(MSB) and D (LSB) into the USR operand. This value is then placed i1n the 'Z' of
the 'Z=USR(0)' statement upon call to CFOC.

Nexzt month I will show how to turn these routines into
useful subroutines for a basic program.

THE PREZ ZEZ

The meeting for July is cancelled due to the closing of the Library duvring
the period ¢f our next meeting. This also causes one further problem and that is

the August meeting anouncement. This will have to be done in this issue of PORT
FE and we hope it hasn't delayed this month's issue too long.
Well I must say that we had a rather good turn out at our June meeting. it

seems that quite a number of people turned out to see what the new Monitor was
really like.

One of the surprizes that also turned up was one of the New IDS5 colour
printers. One of our members demonstrated what it was like to turn out some
multi coloured text, very inpressive indeed. To be sure another person turned up
wilh his entire system as well. So in total we had three systems set up at the
meeting. 5o much for the meeting reports.

1 would like to bring vour attention to some of the things being neglected
by the excecutive of the club.

1. We have some correspondece that has not been answered.
(please do your best and pick up on some of the things
that need to be done)
Some of the EXCECUTIVE have not shown up for a meeting since
they have taken office. {this is a disgrace)
1f some of them don't start to show more interest than that
then we shall have to take appropriate action.
3. 1 am calling for a complete EXCECUTIVE meeting for Aug 8/82 (Sun}
my place - 17 Annapearl Ct. Willowdale - 223-9238
Those that don't show up better have a good excuse. (and phone first)

[5]

Page # 7

NOW THAT WERE ALL ASSEMEBLED by Joseph R Fower

As an assembly language programmer for Systems Research,
Inc., I am often required to add new features to a program
without increasing the size of the code. This, of course,
requires the uwse of many clever memory-squeezing technigues.
Some few of these are so devious they represent the programming
equivalent of a pun. BReing a punster who can’t resist, I decided
to share four examples with you. Some of these have been seen
before. All are both useful and fiendish.

X Togagling Between Two Values

There are many occasions when your code will need to switch
back and forth between two arbitrary values. The noirmal
algorithm for swapping them is:

if LOC = VAL-1
then LOC 3= VAL-2
else LLOC 1= val~-l1

which reguires a comparison, two jumps, and two loads. A much
smaller, faster, more obscure method is:

LOC o= LOC sor (VAL-1 xor VAL-2)

where ©the (VAL-1 xor VAL-2) can often be computed once and used
as a constant. If LOC contained VAL~-1 then the exclusive or with
VAL—-1 leaves zero; and the xor of zero and VAL-2 is VAL-Z. A

corrallry routine allows swapping two values (in A and B) without
resorting to temporary variables:

=
Hi

A - A xor B
B = A sor B
A = A 2or R
which leaves the original value of R in A and A in B.

¥ Carry Bit Extension

There are times when you need to know if a value is zero or
non—-zero. There is a nifty routine to turn any non—-zero value to
OFFh while leaving zero alone. In 280 mnemonics it goes:

ADD A, OFFH sadd FF so anything » O will have
i carry bit set but O clears it
SBC AA 1A = A-A-carry bit

The trick of subtracting the carry bit from 0 is also usable for
sign extension, provided your instruction set allows you to shift
the top bit of the accumulator into the carry bit.

LD L.A
RLCA

SEC A,A
LD H,A

puts A into HL and sign extends it (in only 4 bytes).

¥ Converting Hex Digits to ASCII characters

Page # 8

There are a great number of programs that need a routine to
convert hex numbers into their ASCII character representations.
The fragment I always use is

ADD A, 00H

DAA sDecimal Arithmetic Adjust

ADC A, O40H

DAA
to convert a single hex digit in the A register. The DAA
instruction is normally only used when doing BCD math (and
therefore normally unused). It does some very complex things
with both nybbles in the A register. Try tracing through an
example or two some time.

¥ In—-Line Farameter Fassing
In assembly language, there is usually no way to pass
parameters to a routine except by placing them in some agreed

upon registers/memory locations. This involves spending a great
deal of time and space loading values into these parameter
holders. One method that often saves space at the expense of

time is to follow the subroutine call with the parameters placed
right in the code like:

CALL EXAMPLE

DEFE parameter—1

DEFW parameter-2
etc. The natural question is how do you use these parameters and
not return to them as code? The answer is in the method used to
read the parameters:

EXAMFLE:
EX (SP),HL ;FOINT HL AT FARAMETERS
LD B, (HL) :B 1= PARAMETER-1
INC HL
LD E, (HL)
INC HL
LD D, (HL) ;:DE := FARAMETER-2
INC HL
FUSH HL

main body of subroutine

FOF HL :END OF ROUTINE
EX (SF) ,HL sFOINT TO CODE AFTER PARMS
RET

All of these methods are tricks (or puns) in the sense that
there exist more straightforward methods for accomplishing the
same results. But in the real world we often need to play games
like these in order to meet some size/speed goal. I would love
to have readers of this column submit other examples of

pragramming puns. Dirt must be good; ten trillion worms can®t be
wirrong!

Page # ¢

NOW THAT WERE ALL ASSEMBLED.... by Joseph R Fower

Have vyou ever considered just how awful the instruction set
of the Z80 in your Sorcerer really is? You praobably have if
you’ve ever had cause to do any assembly language programming.
Well, in this article I°m going to show you some of the more
common ways of dealing with the situation of not having all the
instructions you need.

Let us start with a specific example. In the Z8B0O there is
an instruction JF (HL) which puts the 14 bit value in register
pair HL into the program counter. This has the effect of jumping
to the address contained in HL. There is no corresponding CALL
(HL) instruction for indirect subroutine access, nor are there
any JF <conditionr, (HL) or CALL <condition’>, (HL) instructions
for conditional indirect branching. So as long as you just want
to always jump to the address in HL you're fine. All of the
other forms, however, are just as useful and, in many cases, much
more so. Don’t dispair. There is a simple way, with only one

byte of overhead, that we can simulate all of these instructions:
GOTO. HL JF (HL)
Now if we want to do a CALL (HL) we simply use:
CALL GOTO.HL
and the conditional branches ae handled by:

JF “Zeconditions, GOTO.HL
CALL <condition?,GOTO.HL

We now have four sets of instructions where before there was only
one.

But this still isn’t all that good. We are still limited to
just the HL register pair. What about JF (DE) or CALL NZ,(BC)?
These too are possible and coding them reveals another techniqgue
- finding an equivalent instruction or (more often) sequence of
instructions. By using:

GOTO.DE FUSH DE
RET

we gain the ability to use

JF GOTO.DE i JP (DE)
CALL GOTO.DE 3 CALL (DE)
JF cond, GOTO.DE JF cond, (DE)
CALL cond,GOTO.DE CALL cond, (DE)

an

Routines similar to the two above can be coded for BC, IX, and

Y. With these five routines we have effectively added 89 new
instructions to the Z80!

The last technique 1711 discuss for ‘extending’ your
instruction set is by far the most common - using macros to

"create® new instructions. For instance, there is no ZI80

Page % 10

instruction to simply compare HL with another register pair. A
good macro to perform this function might look something like:

s CMP.HL - Compare HL with another register pair.
MACRO CMF.HL,RF
OR A s CLEAR CARRY FLAG
SEC HL,RF i SET FLAGS
ADD HL,RF s DOESN® T CHANGE FLAGS
ENMDM

Now you can do a register pair compare by usingj;
CMF. HL. DE ;Compare HL with DE

Through the judicious use of all three of these methods you
can soon have micros with super-powered instruction sets. This
makes programming a lot easier.

Quicvk Reference Sheet: RCM Pac Basic Keyword Tokens

Kevword Token | Keyword Token | Keyword Token
e e e e e e e 4 e e e e e - b —————
END 80 : CONT 98 ! INT BO
FYOR 31 : LIST 89 ! ABS Bl
NEXT 8% H CLEAR 9A | USR B2
DATA 83 b CLQAD 9B ' FRE B3
BYE 84 , CSAVE acC H INP B4
INPUT 88 i NEW 8D : POS BS
DIM 86 ! TAB(9E ! SAR B6
REALD 87 : e SF H RND B7
LET 88 : FN A0 ! LOG B8
CiTC 88 : SPCY Al H EXP BY
RUN 8Ah N THEN A2 | cos BA
I 8B H NOT A3 H SIN BB
REESTORE 8cC H STEP A4 H TAN BC
GOSUE 8D : 4 AS H ATAN BD
RETURN 8E ; - A6 ! PEEK BE
REM 8F : * A7 ; LEN BF
3FTOP 30 : / As ! STRS co
auT 81 ! A A8 ! VAL Cl
ON A : AND AA) ASC cz
NULL &3 H OR AB H CHRS c3
WAIT 84 ' > AC g LEFTS C4
CEF 83 : = AD ! RIGHTS C5
POXE 96 ! < AE H MIDS cé6
! SGN AF !

PRINT 87

e T o, ———————

Page # 11
WORD PROCESSOR PAC HELPS by Norm Olsen

Ever wish you could wuse the word processor pac to produce CP/M compatible
files? This would allow vyou to throw away those awkward editors wused for
assembler and other program writing. The implementation is simple.

The main difference between PAC files and CP/M files is that the PAC files
lack a LINEFEED (0Ah) code. If this code is added to the PAC files, they can be
used by CP/M.

The routine for adding the LF is added to the disk driver. First, load the
disk driver into memory and then enter the monitor. The driver sits from 100h to
2FFh with the top few bytes not being used. Enter the following code:

EN 2E4 CR
02E4: ES 21 OF 08 7E FE 03 20 O0A 21 92 01 CR
02F0: 22 Fé6 07 E1 C3 92 01 FE OD 23 20 EC 3¢ OA 18 EB/ CR

EN 112 CR
0112: E4 02/ CR

GO 0 CR to enter CP/M
A) Save 2 name.COM Make the name different than vyour reqular driver so you
can tell them apart. (the above steps can be done in DDT if you wish.)

When you wish a CP/M compatible file, simply load the new driver instead of
the old one. When you enter your new text, be sure to double space everything by
entering an extra carriage return at the end of every line. (Do not use the word
wrap feature. End each line with a CR.) When you issue a disk WRITE command, the
new routine goes through the file and changes every byte which follows a
carriage return to a 0Ah code. Since everything is doubled spaced, this means
the second carriage return will always become the 0Ah code. The CP/M text will
be single spaced. DO NOT USE highlighted tert as CP/M will not understand it.

When the text comes back on the screen after the WRITE, two things will
have happened:
1. Although everything is still double spaced, the carriage return symbols for
the blank lines will have diszppeared. (This is because the 0Ah codes don't show
on the screen.)
2. The next time you write a file, the text will not be converted but will be
written as normal word processor text.

To get around ©problem one, simply give the X command to enter the monitor
and immediately PP back to the text. The PAC will convert all the 0OAh codes into
carriage return codes and you can see them again. To get around both problems in
one easy step, X into the monitor and GO 100. The carriage returns will show up
and the next write will do the conversion.

If your assembler . or compiler will not use a file with a .WPF extension,
REName it with the appropriate extension (.ASM, .BAS, etc.) An existing CP/M
file can be edited with the PAC by RENaming the extension to .WPF and reading it
as a normal PAC file. This terxt will already be double spaced.

Even though there are some minor inconveniences, you quickly get used to
them and the ease of editing will more than compensate for them.

X X X X X % X x %X %k X Kk %* k % %X K X Kk %k X % %X kK kX kK X X X X

Lose a word processor pac file and want it back? If it is still in memory, you
can get most of it back by doing the following:

Press RESET
Command X into monitor.

EN 80F CR
080F: 20/ CR

MO B80OF 8CD 810 CR
PP back to pac (or boot CP/M and load driver.)

You will have three lines of blanks at the beginning which you can delete. You
must then reenter the first few lines of text.

When the PAC is booted, it overwrites the first 192 bytes of tezt with some
machine language code. When this code is cleared out, the PAC can then find the
end of file and your text is back. If you need to shorten the text, change the
end of file by locating the spot where you want it and placing a 03h code there.
The first 03h code encountered is used as the end of file.

Fage ¥ 12
RCMP utilities - CP/M users' group utility programs.

As some of you are aware, there exists a CP/M user's group in and around
the regions of Silicon Valley California. Well it's not just a local sort of
thing really, most of the users are spread all over the United Stales and there
also exists a grape vine consisting of Bulletin boards in almost every city in
USA. Now wait a minute you say, thats gquite a few cities your talking chout. Yes
1 hate to sav it but you can find an awful lot of software on those bulletin
boards. Within the last year I would say that I personally have gotten about TWO
Megabytes worth of FREE software. Everything from games to utilities. Some of
which I den't know what I would do without.

Now this leads me to the topic of UTILITIES. For this issue I will list
just a few of them for you. 1In the following issues I will describe them :n a
little more detaii.

CP/M available utilities:

XMODEM : A modem transfer program

SMODEMX . A version of XMODEM rewritten for the Sorcerer

SAPX : Directory sort and re-write program.

s5G . Sgueeze file program. Can save up to 50% disk memory.
usa : Unsqueeze file program.

ZCPR : Z80 CCP for CP/M 2.x supports multi user level.

Dy . CPIM disk doctor.

FMAF . CP/M disk sector mapping program.

CAT . Disk cataloguing program.

SWEEP35 : Replaces FiF and has mult: user level transfers.
COMPARE : Compares files for differences. Multiple drive capability.

Here are two examples

SWEEP35.COM Now this is one of the best known programs on my list. With this

program one can rename files, delete files, tag file for transfer
from disk to disk or user level to user level, delete all untag-
ged files, check how much memory is left on a particular drive -
prior to transferring of files, keeps a running total of how many
‘K' are being transferred so that vou can fit as much on a disk
as is possible, view any terxt files prior to transfer, retag
files for transfers again, sweep all user levels if one wishes,
copy files, untag files, complete menu is displayed.
A super ulility written in PLl and needs about 28K of memory. I
wouldn't use anything else for manipulation of files on disk.
This will also now verify while transferring files <(with CRC
check)

ZCPR.MAC This 1s CCP for CP/M written in Z80 machine language that allows
me to see what user level I 2m on at ail times. The A0) or A8)
indicating the user level. Also there is the DIR *.* § command
that displays only system files. I think that probably one of the
better features is that when, let's say, vyou're on user level §
B: drive, and you type in STAT, now STAT 15 not on user level &
but only on drive A: level G, this CCP will search level é B:,0
B: and then default to A: lievel 0 to access STAT. Nol bad for a
dumb FREE program. It also has other features. ;

Most of these programs 1 enjoy using very much. When you're tied into one
of these BBS systems you also get the feeling that you're all working together
to help each other out. This is why the Sorcerer User's groups were formed all
over the world. The more we can participate and ""communicate"" between our-
selves the better off we shall all be. Remember what the CP/M user's group is
doing, we should be that close knit as well.

bvy: H.A. Lautenbach

Page # 13
Further Glimpses at EXMON2 bv: H.A. Lautenbach

Many are wondering about what's so special about the New Monitor revision
by Walter Blady. For many it will be like breathing in new life into vour
Sorcerer and also your own programming style.

‘ It has not been mentiioned before, but another feature that this Monitor has
that is a real treat, is that the serial port now becomes a true serial port for
300 or 1200 baud modems and also ihe SMODEMX program. The toggling of that Bit
associated with the keyboard scan routine no longer poses any problem. We are
getting many phone calls (long distance no less asking some more complex questi-
ions). I would like to take some time to answer some of these in this newsletter.

Questions Answers

Availability N, mol though PORT FE.

From whom if not FORT FE : H.A. Lautenbach same P.0. Boxz as PORT FE
How much does it cost. . $65.00 + 5.00 Postage U.S. Funds

Is it compatible with the :No, direct monitor calls made by the WPP ROM PAC
WEP ROM PAC

What happens to the old .You can pass them on to never never land OR
Monitor chips. you can stack the NEW Monitor EPROM5 on top of
the old ones and have both monitors.

Is it compatible with the :Yes fully, no bugs detected.
ROM PAC BASIC

What terminal does it :None specific
emulate

With the reverse character :Yes some of them {(not all)
set do I still have my
graphics.

Is the Monitor Jump table :Yes fully (1st 16 are identical)

compatible with the old Plus 18 more added.

Monitor jump table.

What have 1 lost in the :Batch,Test § Files commands

Monitor.

Is it CF/M compatible . YES (completely, with keyboard status
check routine for CP/M)

Will mv speed increase : Depends on how efficient your present

in CP/M. status check is. Lifeboat CP/M 1.4 and 2.2

are definitely improved (if original)
Also Micropolis CP/M can be improved.

Will all software that : Yes, as far as we can determine.
requires cursor As long 2s it has an install program or
positioning work. system parameter file.
Was anything else changed : YES many BUGS have been corrected, some
not even mentioned ever before.
Has a CP/M boot been : No., There are too many boot addresses that could
provided. and are being used on different disk systems. We
thought it wiser not to include this function.
How did you get it all - With a lot of squeezing and the making of certain

that into the monitor. routines more efficient.

<«

EXMONZ - GUESTIONS & ANSWERS Continued. Page ¥ 14

€an 1 control the Sorcerer : Yes, from both the Sorcerer and the keyboard or

from a remote ASCII terminal that is hooked up via the serial port
terminal. port on the Sorcerer. (300 or 1200 baud)
Can I control it via a : Yes, even at 1200 if you have the modems.

modem at 300 baud.

Are 2all the new jumo . It's about 5G/50, some of the jump vectors were
vectors new routines. brought out to be more accessable to the user.

Is it compatible with MP/M . We don't know. should be.

Can I use ail my graphics : Yes if vou want. Reverse ASCII would be
if I want to. overwritten though and would have to be recalled.
ls the reverse ASCII under : Yes, you use the ESC key and a number.

keyboard control.

What about updates. What : 'If' there are any, only a small handling charge
if there are still bugs. will get you revised EPROMS.

Are there discounts for : Yes group purchases will be given discounts.
user groups. S to 9 sets 15% ,10 or more Z0%

There are probably some that I've missed, but if anv of vyou have more
questions, Please direct all enquires to me personaliy. Most of your ouestions
are answered with the documentation that comes with the EPROM3.

For most of vyou there is a2 hardware change requiring you to change the
ROM/EPROM jumpers to that of the standard 2714 EPROMS and thats all there is to
it. In my personal op:inion (BIASED OF COURSE) I really think it's the best thing
that has happened to the Scrcerer since it was first sold.

1 do recommend that everyone needs this capability, for the multitude 1I'm
sure that most of you have done without long enough, The added frills are nice.

R o R L R RN e N N L R NNy

PART 11 ~ The SI0 Programming
The Z-80 SI0 contains 8 registers that are written to in order.

To initialize: All write registers, with the exception of register '0' are 2
byte instructions. The first byte signifies the register, the second, is the
data being sent to it. Upon reset, write register '0' is entered. A sinale byte
here in register '0' takes you through the other registers.

The next page shows all of the registers and the meaning of each bit in
each register (0-7). This month please digest this information so that next
month, when you are given a simple Hard & Software implementation. you will have
a better understanding of how versatile this chip really 1s.

1 am taking this all very slowly sc that we don't lose too many people
along the way. This can become very involved during the set up procedure.

Next month (August issue this will be continued).

by: Brad Fowiles

510 -

WRITE REGISTER O
pDAoe [05] D4] D3] D2] 01] DO]
0

REGISTER O
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7

(-]

0
o
1
1
1

-t OO0 = =-00
-0~0=-0=0

1
NULL CODE

SEND ABORT (SDLC)

RESET EXT.STATUS INTERRUPTS
CHANNEL RESET

RESET RxINT ON FIRST CHARACTER
RESET TxINT PENDING

ERROR RESET

RETURN FROM INT (CH-A-ONLY)

~a«as~0000
-0=0-0=0

NULLCODE

RESET Rx CRC CHECKER

RESET Tx CRC GENERATOR
RESET SENDING CRC/SYNC LATCH

—-—00
-0 -0

WRITE REGISTER 2*

o7] oe[ps]04] 03] p2] D1]00]
Tvo

V3 [INTERRUPT
V4 | VECTOR

~CAN ONLY BE WRITTEN INTO CHANNEL 8

WRITE REGISTER 4
p6] 05] 04] 03] 2] D] DO

T PARITY ENABLE
L._ PARITY EVEN/ODD

0 0 SYNCMODESENABLE

—

D7

REGISTER

INFORMATION

WRITE REGISTER 1

[o7] 06l Ds]D4]D3[D2]

1100}

L_EXT.INT ENABLE
Tx INT ENABLE
STATUS AFFECTS
VECTOR (CH-B-ONLY)
Rx INT DISABLE
Rx INT ON FIRST CHARACTER
ONLY
INT ON ALL Rx CHARACTERS
(PARITY AFFECTS VECTOR)
INT ON ALL Rx CHARACTERS
(PARITY DOES NOT AFFECT
VECTOR)

L WAIT/READY ON R/T

WAIT FN/READY FN
WAIT/READY ENABLE

WRITE REGISTER 3

[o7]oe]os]pa] 03[02][D1] DO]

--00
- -0

L_Rx ENABLE
SYNC CHARACTER
LOAD INHIBIT
ADDRESS SEARCH
MODE (SDLC)

L Rx CRC ENABLE
ENTER HUNT MODE

AUTO ENABLES

Rx 5 BITS/CHARACTER
Rx 7 BITS/CHARACTER
Rx 6 BITS/CHARACTER
Rx 8 BITS/CHARACTER

WRITE REGISTER 5

7] pe] ps] 04 p3| D2/ D1 DO §

l —Tx CRC ENABLE
RTS

L SDICT/CRC-16
Tx ENABLE

SEND BREAK

Tx 5 BITS (OR LESS)/CHARACTER

Tx 7 BITS/CHARACTER
Tx 6 BITS/CHARACTER
Tx 8 BITS/CHARACTER

0 1 1STOPBIT/CHARACTER
1 0 1%STOPBITS/CHARACTER
1 1 2STOPBITS/CHARACTER
0 0 8BITSSYNC CHARACTER
0 1 168IT SYNC CHARACTER
1 0 SDLCMODE (01111110 SYNC FLAG)
1 1 EXTERNAL SYNC MODE
0 0 X1 CLOCK MODE
0 1 X16 CLOCK MODE
1 0 X32CLOCKMODE
1 1 X64 CLOCK MODE

WRITE REGISTER 6

D7] D6]| DS] D4} D3| D2]D1] DO)

C_SYNCBITO

SYNCBIT 1

SYNC BIT 2

SYNCBIT 3
SYNCBIT4 [
SYNCBIT 5

SYNCBIT 6

_ SYNCBIT

*ALSO SDLC ADDRESS FIELD

o-=00

PLo~-0

WRITE REGISTER 7
[07] DGlDSID‘IDSI D?lD! IDO'

l L—-SYNCBITS
SYNCBIT9
SYNC BIT 10
SYNCBIT 11
SYNCBIT12[*
SYNC BIT 13

SYNC BIT 14

SYNCBIT 1

*FOR SDLC IT MUST BE PROGRAMME
TO "01111110” FOR FLAG RECOGNIT

- =

Page # 146

s T T H
‘L“*JF_LILW r
T l =
1 {
' —— ad
A NEW MONITOR =E FF _,“

FOR THE SORCERER e A
At last, here’s a revised version of Exidy’s operating) '] r

system that has full terminal functions. EXMON2 will _;:]_ - r'"_d__
increase the flexibility of your Sorcerer computer and L -

open the door to many excelient software applications

-1
: many e o - —
that require special terminal features. |
These New EXMON2 routines can be used directly - r
from your Sorcerer keyboard and are easy to use in }., . = —
BASIC programs: —] .
* Direct cursor positioning - T- | —] -
¢ Clear to end of line ”"_}" — ,_']
¢ Clear to end of screen ..LJ_ T F
* Delete line — L r["‘
* Text highlight on/off "‘} r-—L— L _.J’r_
* Reverse ASCII characters -

EXMON2 has many additional features that give your
Exidy Sorcerer even greater flexibility:

¢ Define and reserve top of screen
¢ Search memory for hex or ASCII string

* Parallel and serial printer drivers
with or without line feeds

* A properly working serial port
(for modems, etc.)

* A f-a-s-t keyboard status routine
that’s CP/M compatible

* And there’s more. ..

|5
1

L

Each EXMON2 set comes complete with two burnt-in,
fully-tested Eproms and an accompanying user's
manual with easy-to-understand installation instructions.
1set (2 Eproms & manual) . . . $65.00 U.S. + postage*
Group i (5to9sets) ... $55.25U.S. + postage*
discounts) (10ormore)... $52.00U.S. + postage*

*Add $5.00 U.S. with the first set, $3.50 U.S. with each
additional set for postage and handling.

Please make cheques payable to:

H.A.LAUTENBACH, and mail to: P.0. BOX 1173, STN. B, - l e

DOWNSVIEW, ONTARIO, CANADA M3H 5V6 — I— - L
EEEEEEEENEEEEEEER T 14

n TO ORDER EXMON2: |

Please send more information on EXMONZ2.
| have enclosed my certified cheque/money order

| —
[| for§_____ ;please send me __ EXMON2 set(s). [| L____.-T- l_J | J —LI.L

B companyiciub

- Name

[|
[|
B Address [|
|
|

SORCERER USERS"* GROUP { TORONTO)> Fage #17

Membership Application Form Covering Jan. to Dec. 1982

Membership to the group is not restricted to the TORONTO area. All pecsons
willing to participate are invited to join.

As 3 member of the Sorcerer Users' Group (Toronto), I enclose the annual
mnembership fee and agree to the following Terms.

i. That I will not, without the authorization of the board of directors,

represent myself or take any action as agent, or representative or become spokes-
person of the group.

2. That 1 will not use any software obtained frem the SUGT library for any
commercial purpose or financial gain. The library shal! be available to me shouid
1 wish to obtain programs donated by other members. These programs shall not be

distributed without the owners consent and/or the consent of the board of excecu-
tive officers.

3. That I have the richt to vote for the officers and directors of the
organization at the annual general meeting.

9. That any breach of the above conditions and anv other restrictions that
the Officers of the Club may :invoke in the future on my part may result in
suspension or termination of my membership without refund.

Annual Membership Rates: (Jan - Dec)

Canadian - $15.00 Cdn -~ PLUS 56 .00 Fostage
U.5.& Foreign §15.060 ¢(U.S5 Funds) PLUS $10.00 Postage

Payable to - SORCERER USERS' GROUP (TORONTO) - by Chegue or Money Orders.

The SUGT program librarv is available to all members in the following manner.

You may send $6.00 + $1.50 postage for each volume as they become available
and we shall supply the cassette/s. Program cassettes shall be sent via Air Mail.

All issues of PORT FE shall be mailed first class, in the case of non local
issues, they are mailed via Air Mail. Past issues of PORT FE are only available

for the current calendar year. Contact the editor, he will advise the amount of
payment for previous 3 ;ssu€s.

ADDRESS : . . . e e
CI Y . e e
POSTAL CODE:.
TELEPHONE: Res................. Bus...........
Pavments enclosed {(membershipi:.............. Library tape/s........ Vol t or 2

Please list the type of equipment you are using etc..

Sorcerer size:. 8... 16... 3Z... 48... other...... 5100... OGraph board
Disk system - Micropolis
Other Equipment

..... Discus.... Exidy.... other... Size.........

If you belong to any other Sorcerer Users' Group please list it below.

	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_01
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_02
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_03
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_04
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_05
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_06
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_07
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_08
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_09
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_10
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_11
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_12
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_13
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_14
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_15
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_16
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_17
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_18

