
The Toronto Sorcerer Users'
Group was founded in the
Spring of 1979, a handful of
willing and eager to learn
members.

Thxs newsletter shall at all
times keep in mind the goal it
lts conception. To spread the
seeds of knowledge.

Articles printed in this
newsletter shall be free for
all Sorcerer Users' groups to
reprint or comment on as they
see fit.

Articles submitted for this
newsletter must be in no later
than the begxnning of the lst
of every month.

'C' LIBRARY ROUTINES by D•recJc Comes

Th i :. is our t hi r d ins t aliment of our ' C' I i bra r y routines and, t hi .s 1110 nth, we
will be looking at two routines that provide us with inverse video of the norm~l
ascii character set. Routine 11 must first be used to create lhe inverse
character set of ascii characters which starts at FSOOH and put them in the
standard and programmable graph1cs section, then routine #2 will refer tothem
simply by adding 128 to th~ ascii code of the character requested. This is
sufficient
for other
creating
character
The method
not have

for most applications, but if you wish to use your graphics sect1on
uses, then you will hdve to use another method which will involve

the inverse characters on the fly and keeping them in a graphics
cell for the duration of its need; a rather more cumbersom~ method.
listed in these two routines is more elegant and faster, since you do
to go through a routine to create it every time you want to use an

Inverse character; JUst ask for 1t.

Note, however, that if you use a routine that uses Exidv's cle&r screen
routine then your graphics section will be re-written and you will have to
invoke !nvascii() again. It is best to use your own routine to clear the screen.

ROUTINE #1.

COMI1ENTS:

resides at
Inverse().

This routine creates an inverse copy of the ascii character set which
FSOOH and puts it in the graphics section for use by routine

CALLED ROUTiNES: None.
USAGE EZAI1PLE: invasciii);

invasciii) 1• setup graphics with inverse of ascii *I

char *graph;

for igraph = OxfcOO; graph ; graph++)

"'graph= * (*\ graph- 1024i),

ROUTINE # 2.

COMMENTS: This routine changes a string of ascii characters pointed to bv <ptr>
1nto 1ts inverse video equivalent. Routine Invascii\) is a prerequisl le tor lhis
routine.
CALLED ROUTINES. None.
USACE £XA11PLE. putdmai 2, 3, inverse("this is a string"));

inverse(otr

char 'ptr;

char t~temp;

temp = ptr,
wh i 1 e (* p t r
{

:l!ptr = :lrptr
plr++i

return< temp);

Ox80;

Page II 2
Tutorial .2..n Standard Rom-Pac.~

For the n~xt few columns I will concentrate on Rom-Pac basic and how to
Improve its performance. By the end of the tutorial you will know quite a bil
more about what goes on inside that 6 track box.

Quite a few people still don't have disks and are using a 'standard'
Sorcerer - this is who I direct these columns to.

First lets find out more about the internal workings of the Pac. Steve
Dicker and 1 had spent two years dissasemblinq the basic. The following info.
comes from this work. I think everyone would like to find out what the Bas1c
Work Area holds and does at OlODH. This table is what we consid~r its functions
to be:

0100
0103
0106

0109
011 7

0 11 A
013A
013E
0141
0142

0143
0144
0145
0 1 4 7
01 4?
014B
01 BE
018F

0190
01 91
0 19Z

0 1 9 4
0196

0198

019A
019C
019E
0 lAO

01 A2

01A4
01A6

01A8
01 AA
OlAC
OlAD
01AE
01 AF
OlBl
01B3
01B5
D1B7
01B9

01 BS
OlBD
01 BF

01C3

Jump to C06B - Basic warm start <PF>
Jump to CiE5 - USR ;ump address lC7E5 is FC ERROR vector>
Basic 'OUT' function subroutin~
Subtraction routine used by division code
3 byte random number seed
~ Unidentified • Looks like floating point data
Current random number in floating point
current 'IIIIP' function routine
Number of nulls+l to send after CR.
Line length - number of characters before auto return.
Last column of cursor - used for screen formatting
Output suppression flag by Control 0 <!=suppress output)
Bottom of string sp~ce pointer (fills from top down)
Direct/Indirect mode flag <FFFF =direct mode)
Start address for basic text (default is 0105)
Basic line input buffer
Current print position \column # returned by POS<Oll
Flag: O=Locate named variable, -!=Create entry in table

for named variable
String/numeric operation flag Cl=string/O=numericl
Holds intermediate value during expression evaluation
Top of string space <space filled from here down>
Address of next available location in LSPT

LSPT- Literal String Pool
- this area holds pertinent info. on locations

of strings being used by other routines ln

the process of manipulation.

End of LSPT
String length - used when printing any string
String starting location - for printing the string
Address of where next string should be placed
Index of last byte executed in current basic statement
Present line number from which we are readrng data
Used by FOR statement <l=FOR in progress,O=No FOR>
Last character input into buffer
Input/Read flag <=0 during INPUT,<>O during read>
Address of location of n~xt command in basic to execute
Adddress of instruction to be executed when AC hit.
Current basic line number of line executing
Address of next full line to execute (link pointer)
Address of end of program/ start of variable area
Address of end of variable area/ start of array area
Address of end of array area/ start of free space
Address of last used data operand
Input/Output parameter for USR function and temporary
storage area for basic calculations

ASCI! number output-conversion buffer o 1 c~

01DO
01D1
01DZ
01 D4
01D5

Zero byte to indicate end of ASCII buffer
Temporary storaqe of MSB of register value
Temporary storape of next MSB of register value
Null byte markinq start of basic program space
Start of bas1c text area

C075-CilC5
COCo-COF5
COF6-C1EO
C1E1-CZ31
CZ3Z-CZ58
CZ58-CZA2
CZA3-CZA9
C2AA-C2AE
C2AF-CZB6
CZB7-CZBC
CA a-CA2D
CAFF-CBOF
C21D-

Memorv Map 21 Rom-Pac Version ~

Opening message
Command look up tale
Jump table for basic commands
Function look up jump table
Two letter error messages
BCA to be moved to OlOOH
'ERROR'
' IN I

' READY <or)'
I BREAK I

'?REDO FROM START'
' EXTRA IGNORED'
Preced~nt tokens

~ ~ basic command jumo addresses

C7 09 END Co2E FOR CB34 NEXT CSBS DATA
E003 BYE CA43 INPUT CD>H DIM CA72 READ
cscc LET can GOTO csss RUN C944 IF
C6DD RESTORE C661 GOSUB C890 RETURN CSB? REM
C70i' STOP 0256 OUT C926 ON C748 NULL
D25C lJAIT CF lF DEF D?OS POKE C968 PRINT
C73S CONT CSC6 LIST CSOF CLEAR D341 CLOAD
DZC9 CSAVE C41A NElJ D7AZ TAB< D4EA FN
DS4B SPC< DSC3 THEN CD2F NOT

Page I 3

•' STEP and TO have no sDecific routine but are checked on by the FOR routine
itself.

And these ~ the~ function~ addresses

0606 SGN D6CA INT D61C ABS 0103 USR
CEE9 FRE D24A INP CF17 POS DBBA SQR
09 99 RND D4AB LOG 0908 EXP DADE cos
DA14 SIN DA7S TAN DASA ATN D6FE PEEK
DlSB LEN CF9F STRS D22S VAL DUA ASC
D1AB CHRS D1BB LEFTS DlEB RIGHTS D1F5 ttl OS

Now wi 11 explain where and how to utilize some very useful routine!>
within the basic for your own basic-machine language combination programs. Ylith

this we wi 11 be able tc write extensions to the rom-pac basic. such examples I

wi 11 explain next month.

- To display a basic error message:

LD E,ERROR NUMBER Error numbers <in decimal>:
JP C322H 16-BS 22-ID 12-0M 02-SN

32-CN 00-NF 26-0S 30-ST
18 -DO 28-LS 10-0V 24-TM
08-FC 06-0D 04-RG 34-UF
14 -UL 20-/li ZS-MO

Page I 4

- FINDLINE - C3FA - Search for lhe basic line having the line number held in DE.
On return, BC points to the start of the proper line and HL points to the start
of the following line. The carry and zero flags are set to indicate the fol­
lowing conditions:

(z 'c) Line was found
Line not found <NZ,NC) - BC points to the start (link

pointer> of a line which has a
line number greater than that in
DE.

Line not found - end of program reached <Z,NCl

- CR/LF - C9BF - send CR/LF and nulls - set 018E to zero

- Print message - 0015 - print message pointed to by HL and must be terminated
by a null.

- Input line to buffer - CS3A - this subroutine accepts input from the current
input device and writes it into the basic line input buffer starting al 014CH.
An automatic CR occurs after 64 characters have been input. The last charact~r
entered is held at location OlADH. A CR causes the line to be terminated with a
null and a CR/LF to be sent to the output d~vice. HI is left pointing to one
byte before the input (014BH> and B holds the number of characters input. IF
Control-C is pressed during input. the subroutine returns with the carry flaq
set.

- Copy - CS11 - Move the byte pointed to by HL to the location pointed to by DE
and includes both pointers. The move is repeated until HL points to~ null or a
byte equivalent to that h~ld in B upon entry.

-Translate - C467 - Translates raw input from ASCII codes xn buffer to basic
tokens and over-writes the input in the input buffer with the compressed in­
struction. The line is terminated with 3 nulls. On exit, HL=014BH and DE points
to the last byte of the packed command string.

- Test sign - D5F7 - Test the floating point variable in the locations 01BF-01C2
and return with the flags as follows:

Number is zero
Number is negative

Z is set
S is set

Number is posxtive S is reset

- CMP BC,DE - Oo7Z - Compare the floating point number in B,C.D,E with that held
in locations 01BF-01C2< the USR operand space>. Returns with; Z set if the
numbers are eaua1.

- Capital~ - C7BC- Test the character pointed to by HL. If it is not a capital
letter then return with the carry flag set.

- Scan Line - CoCD- This is a very important and useful routine. On entry HL
points to the line to be scanned. The line must end in a null. A scan is made
until a character other than a space<2DH> is found. The subroutine returns with
HL pointing to the character, the character in register A and the flags set as
follows;

If a null <OO> was found- end of line
If the character is a digit
If the character is not a digit

Z is set
C is set
C is reset

- CMP HL/DE - C574 - Compare the contents of HL to that of DE and:

If HL=DE returns with Z set
If HL<DE returns with C set
If HL>=DE returns with C reset <NC>

Page # 5

- ASCII to HEX - C7EA- Converts ASCII code for a number into a two byte hea
number in DE. On entry HL points to the first character in the number. If the
number exceeds a vlaue of 65529, a SN ERROR is printed. IF HL is pointing to a
null on entry, then the subroutine returns with Z set.

- Check Syntax - C57A - this subroutine performs a syntax check. On entry HI
points to a character in the command line which must be a particular character
for the instruction to have a proper syntax. The character which it must be is
that given by the ASCII code following the CALL SYNTAX instruction. This byte is
skipped on return !rom the subroutine and is therefore not read as an instruc­
tion. The process is carried out by the subroutine as follows:

XXX
XXX+3

MAIN PROGRAM

CALL C57A
II II

' character to be compared to \HL>
XXX+4 --> control returns here

1> The CALL places the XXX+3 on the stack.
2) Subroutine loads A with char. pointed to by HL
3> Exchange top of stack with HL <HL=XXX+3>
4> Compare char. in A with that pointed to by HL <A comma"," 1n this case)
S> Increment HL <the return address> and put it back on the stack. retrievinq

original value of HL.
6) Now return address is XXX+4
7> Print error message if not equal or return
8) On return. the "," is skipped ever.

- VARPTR - CDAO - looks for variable name
- if found goto CDF5
-otherwise goes to CDC1 <not found)
- variable name is in BC
- on exit, DE points to var1able value <4

floating point bytes> if found.

-Reset Pointers- C426 - this sets up a new stack,resets all the basic pointers
and any fiags set by basic subroutines.

- Output character - C585 - sends character to current output device
- Input character - C5B4 - gets character from current input d~vice.

- Cet 8 bit ar~ument DZSD - this subroutine works out an argument pointed to ~,

HL and returns its v~lue in E.

- Get 16 bit argument - CD54 - this subroutine works out an argument pointed to
by HL and returns the value in DE.

Ex. POKE 4096~A+1,16/SQR<2*D>

CALL CD54 get 16 bit poke local ion in to DE
PUSH DE
CALL CJ?A check for comma
DEFB .. II .
CALL D28D get 8 b i t argument into E
LD A.E

Page I 6
POP
LD
RET

DE
<DE> . A

qet back poke location
and poke location with 8 bit I

Vork out numeric argument - CB7F - this differs from the above two routines as
it works out the argument pointed to by HL then places it into the USROP loca­
tion at 01C2 in floating point form - not binary. You th~n 'CALL C7DO' to
convert
DE.

this floating point number to binary. It returns with the argument in

- Vork out String Argument - CB93 - This routine will work out a string argument
and set up pointers so you will be able to manipulate that string upon return.
HL points to the start of the argument in memory. CALL CB93. The argument has
been worked out and all pointers placed in the LSPT. PUSH HL then CALL D1S9.

Upon return HL+l will point to the string located somewhere in m~mory. HL will
point to the length of the string byte. Remember to POP HL.

- Get USR argument into DE - C7CD - this works out the argument in the USR<X>
statement and places the value in DE. The value must be between -32767 and 3Z767

- Save D,A in Z=USR<O> expression - CFOC - this saves a 16 bit value found in A
<MSB> and D <LSB> into the USR operand. This value is then placed 1n the 'Z' of
the 'Z=USR<O>' statement upon call to CFOC.

Next month I will show how to turn these routines into
useful subroutines for a basic program.

==

THE PREZ ZEZ

The meeting for July is cancelled due to the closing of the Library during
the period {,f our next meeting. This also causes one further problem and that il>

the August meeting anouncement. This will have to be done in this issue of PORT
FE and we hope it hasn't delayed this month's issue too long.

Vel! I must say that we had a rather good turn out at our June meeting. It
seems that quite a number of people turned out to see what the new Monitor was
really like.

One
printers.

of
One

the surprizes that also turned up was one of the N~w

of our members demonstrated what it was like to turn
IDS colour

out some
turned up
up at the

multi coloured text, very inpressive indeed. To be sure another person
with his entire system as well. So in total we had three systems set
meeting. So much for the meeting reports.

would like to bring vour attention to some of the things bein9 neglectPd
by the excecutive of the club.

1. Ve have some correspondece that has not been answered.
(please do your best and pick up on some of the things

that need to be done)
2. Some of the EXCECUTlVE hdve not shown up for a m~eting slnce

they have taken office. ithis is a disgrace)
If some of them don't start to show more interest than that
then we shall have to take appropriate action.

3. I am calling for a complete EXCECUTIVE meeting for Aug 8/82 (Sun)
my place - 17 Annapearl Ct. Villowdale - ZZ3-9Z38
Those that don't show up better have a good excuse. <and phone first)

Page # 7

NOW THAT WE'RE ALL ASSEMBLED by Joseph R Power

As an assembly language programmer for Systems Research,
Inc., I am often required to add new features to a program
without increasing the size of the code. This, of course,
requires the use of many clever memory-squeezing techniques.
Some few of these are so devious they represent the programming
equivalent of a pun. Being a punster who can't resist, I decided
to share four examples with you. Some of these have been seen
before. All are both useful and fiendish.

Between Two Values * Toggling
There

back and
algorithm

are many occasions when your code will need to switch
forth between two arbitrary values. The normal

for swapping them is:

if LOC = VAL-l
then LOC := VAL-2
else LOC := val-1

which requires a comparison, two jumps,
smaller, faster, more obscure method is:

LOC := LOC xor <VAL-l xor VAL-2)

and two loads. A much

where the <VAL-l xor VAL-2) can often be computed once and used
as a constant. If LOC contained VAL-1 then the exclusive or with
VAL-l leaves zero; and the xor of zero and VAL-2 is VAL-2. A
corrallry routine allows swapping two values (in A and B> without
resorting to temporary variables:

A := A xor B
B := A xor B
A := A xor B

which leaves the original value of B in A and A in B.

* Carry Bit Extension
There are times when you need to know if a value is zero or

non-zero. There is a nifty routine to turn any non-zero value to
OFFh while leaving zero alone. In ZBO mnemonics it goes:

ADD A,OFFH ;add FF so anything > 0 will have
carry bit set but 0 clears it

SBC A,A ;A := A-A-carry bit
The trick of subtracting the carry bit from 0 is also usable for
sign extension, provided your instruction set allows you to shift
the top bit of the accumulator into the carry bit.

LD L,A
RLCA
SBC A,A
LD H,A

puts A into HL and sign extends it (in only 4 bytes).

* Converting Hex Digits to ASCII characters

Page I 8

There are a great number of programs that need a routine to
convert hex numbers into their ASCII character representations.
The fragment I always use is

ADD A,090H
DAA
ADC A,040H
DAA

;Decimal Arithmetic Adjust

to convert a single hex digit in the A register. The DAA
instruction is normally only used when doing BCD math (and
therefore normally unused). It does some very complex things
with both nybbles in the A register. Try tracing through an
example or two some time.

* In-Line Parameter Passing
In assembly language, there is usually no way to pass

parameters to a routine except by placing them in some agreed
upon registers/memory locations. This involves spending a great
deal of time and space loading values into these parameter
holders. One method that often saves space at the expense of
time is to follow the subroutine call with the parameters placed
right in the code like:

CALL EXAI"'PLE
DEFB parameter-1
DEFW paramete,~-2

etc. The natural question is
not return to them as code?
read the parameters:

EXAMPLE:

how do you use these parameters and
The answer is in the method used to

EX
LD
INC
LD
INC
LD
INC
PUSH

CSP>,HL
B, CHL>
I-lL

;POINT HL AT PARAMETERS
;B := PARAMETER-1

E, CHL>
HL
D' <I-lL>
HL
HL

;DE := PARAMETER-2

main body of subroutine

POP
EX
RET

HL
<SP>, HL

;END OF ROUTINE
;POINT TO CODE AFTER PARMS

All of these methods are tricks Cor puns> in the sense that
there exist more straightforward methods for accomplishing the
same results. But in the real world we often need to play games
like these in order to meet some size/speed goal. I would love
to have readers of this column submit other examples of
programming puns. Dirt must be good; ten trillion worms can't be
wrong!

Page i 9

NOW THAT WE'RE ALL ASSEMBLED •••• by Joseph R Power

Have you ever considered just how awful the instruction set
of the Z80 in your Sorcerer really is? You probably have if
you've ever had cause to do any assembly language programming.
Well, in this article I'm going to show you some of the more
common ways of dealing with the situation of not having all the
instructions you need.

Let us start with a specific example. In the Z80 there is
an instruction JP <HL> which puts the 16 bit value in register
pair HL into the program counter. This has the effect of jumping
to the address contained in HL. There is no corresponding CALL
<HL> instruction for indirect subroutine access, nor are there
any JP <condition>, <HL> or CALL <condition>, CHL> instructions
for conditional indirect branching. So as long as you just want
to always jump to the address in HL you're fine. All of the
other forms, however, are just as useful and, in many cases, much
more so. Don't dispair·. There is a simple way, with only one
byte of overhead, that we can simulate all of these instructions:

GOTO.HL JP <HL>

Now if we want to do a CALL <HL> we simply use:

CALL GOTO.HL

and the conditional branches ae handled by:

JP <condition>,GOTO.HL
CALL <condition>,GOTO.HL

We now have four sets of instructions where before there was only
one.

But this still isn't all that good. We are still limited to
just the HL register pair. What about JP <DE> or CALL NZ, CBC>?
These too are possible and coding them reveals another technique
- finding an equivalent instruction or <more often> sequence of
instructions. By using:

GOTO.DE PUSH DE
RET

we gain the ability to use

JP GOTO.DE ; JP <DE>
CALL GOTO.DE ; CALL <DE>
JP cond,GOTO.DE JP cond, <DE>
CALL cond,GOTO.DE CALL cond, <DE>

Routines similar to the two above can be coded for BC, IX,
IV. With these five routines we have effectively added 89
instructions to the Z80!

and
new

The last technique I'll discuss for •extending• your
instruction set is by far the most common - using macros to
•create• new instructions. For instance, there is no Z80

Page t 10

instruction to simply compare HL with another register pair. A
good macro to perform this function might look something like:

CMP.HL Compare HL with another register pair.

MACRO CMP.HL,RP
OR A
SBC HL, I~P
ADD HL,RP
ENDM

;CLEAR CARRY FLAG
;SET FLAGS
;DOESN'T CHANGE FLAGS

Now you can do a register pair compare by using;

CMP.HL DE ;Compare HL with DE

Through the judicious use of all three of these methods you
can soon have micros with super-powered instruction sets. This
makes programming a lot easier.

Quiuk Retcrence Sheet: ROM Pac Basic Keyword Tokens

K~yworu To!~f!n Kr.:yword Token I Keyword Token I

·---- -- .. - ·- ----- - ~ ----------· ------ ----+ --------- ------- --
END ao CONT 98 INT BO
f'(l R 91 1. I ST 99 ABS Bl
NEXT a ·z CLEAR 9A USR 82
IMTA 33 C I.O.\D 98 FRE B3
B~'"E a,_~ CSA.VE 9C INP B4
INPUT 85 NE\o/ 90 POS 85
DH! 86 T.\E (9F. SQR B6
P.EJ\.D B 'I TO 9F RND B7
LET 88 FN AO LOG BS
COTO 89 SPC< Al EXP B9
RUN Bl\ THEN AZ cos BA
IF BB NOT A3 SIN BB
RES"rORE ec STEP A4 TAN BC
GO SUE: SD i AS ATAN 80
R:t-:TURN BE AS PEEK BE
REM SF * A7 LEN BF
STOP 90 I AS ST.R$ co
OUT &1 A A9 VAL Cl
ON sz AND A.\ ASC C2
NUI,L !::3 OR AB CH.R$ C3
'WAIT Q <' w ~) AC LEFTS C'l
DEE' 9 •: = AD RIGHT$ C5
POKE 96 < AE MID$ C6
PRINT 97 SCN AF

---------------·-+-------------------+----------------

WORD PROCESSOR PAC HELPS by Norm Olsen
Page # 11

Ever wish you could use the word processor pac to produce CP/M compatible
files? This would allow you to throw away those awkward editors used for
assembler and other program writing. The implementation is simple.

The main difference between PAC files and CP/M files is that the PAC files
lack a LINEFEED <OAh> code. If this code is added to the PAC files, they can be
used by CP/M.

The routine for adding the LF is added to the disk driver. First, load the
disk driver into memory and then enter the monitor. The driver sits from 100h to
2FFh with the top few bytes not being used. Enter the following code:

EN 2E4 CR
02E4: ES 21 OF 08 ?E FE 03 20 OA 21 92 01 CR
02FO: 22 F6 07 E1 C3 92 01 FE OD 23 20 EC 36 OA 18 EB/ CR

EN 11 2 CR
0 11 2 : E 4 0 2 I CR

GO 0 CR to enter CP/M

A> Save 2 name.COM
can tell them apart.

Make the name different than your regular driver so you
<the above steps can be done in DDT if you wish.)

When you wish a CP/M compatible file, simply load the new driver instead of
the old one. When you enter your new text, be sure to double space everything by
entering an extra carriage return at the end of every line. <Do not use the word
wrap feature. End each line with a CR.> When you issue a disk WRITE command, the
new routine goes through the file and changes every byte which follows a
carriage return to a OAh code. Since everything is doubled spaced, this means
the second carriage return will always become the OAh code. The CP/M text will
be single spaced. DO NOT USE highlighted text as CP/M will not understand it.

When the text comes back on the screen after the WRITE, two things will
have happened:
1. Although everything is still double spaced, the carriage return symbols for
the blank lines will have disappeared. <This is because the OAh codes don't show
on the screen.)
2. The next time you write a file, the text will not be converted but will be
written as normal word processor text.

To get around problem one, simply give the X command to enter the monitor
and immediately PP back to the text. The PAC will convert all the OAh codes into
carriage return codes and you can see them again. To get around both problems in
one easy step, X into the monitor and GO 100. The carriage returns will show up
and the next write will do the conversion.

If your assembler. or compiler will not use a file with a .WPF extension,
REName it with the appropriate extension <.ASH, .BAS, etc.) An existing CP/M
file can be edited with the PAC by RENaming the extension to .WPF and reading it
as a normal PAC file. This text will already be double spaced.

Even though there are some minor inconveniences, you quickly get used to
them and the ease of editing will more than compensate for them.

*
Lose a word processor pac file and want it back? If it is still in memory, you
can get most of it back by doing the following:

Press RESET

Command X into monitor.

EN 80F CR
OBOF: 20/ CR

MO BOF BCD 810 CR

PP back to pac <or boot CP/M and load driver.)

You will have three lines of blanks at the beginning which you can delete. You
must then reenter the first few lines of text.

Vhen the PAC is booted, it overwrites the first 192 bytes
machine language code. When this code is cleared out, the PAC
end of file 1nd your text is back. If you need to shorten the
end of file by locating the spot where you want it and placing
The first 03h code encountered is used as the end of file.

of text with some
can then find the
text, change the

a 03h code there.

Page I 12
RCMP utilities - CP/K users' group utility programs.

As some of you are aware, there exists a CP/M user's group in and around
the regions of Silicon Valley California. Well it's not just a local sort of
thing really, most of the users are spread all over the United Stales and thert
also exists a grape vine consistinq of Bulletin boards in almost every city in
USA. Now wait a minute you say, thats quite a few cities your talking ~bout. Yes
I hate to say it but you can find an awful lot of software on those bulletin
boards. Within the last year I would say that I personally have gotten about TWO
Megabytes worth of FREE software. Everything from games to utilities. Some of
which I don't know what l would do without.

Now this leads me to the topic of UTILITIES. For this issue I will list
just a few of them for you.
little more detail.

In the following issues I will describe them 1n a

XHODEM
SMODEMX
SAPX
so
usa
'ZCPR
DU
FMAF
CAT
S\rJEEP3S
COMPARE

CP/M available utilities:

A modem transfer orogram
A version of XMODEM rewritten for the Sorcerer
Directory sort and re-write program.
Squeeze file program. Can save up to SO~ disk memory.
Unsqueeze tile program.
ZSO CCP for CP/M 2.x supports multi user level.
CP/M disk doctor.
CP/M disk sector mapping program.
Disk cataloguing program.
Replaces PIP and has multi user level transfers.
Compares files tor differences. Multiple drive capability.

Here are two examples

5\rJEEP3S.COM

ZCPR.MAC

Now this is one of the best known programs on my list. Vith this
program one can rename files, delete files, tag file for transfer
from disk to disk or user level to user level, delete all untaq­
ged files, check how much memory is left on a particular drive­
prior to transferring of files, keeps a runninq total of how many
'K' are being transferred so that you can f1t as much on a disk
as ls possible, view any text files prior to transfer, retaq
files for transfers again, sweep all user levels if one wishes,
copy files, untag files, complete menu is displayed.
A super utility written in PLI and needs about Z8X of
wouldn't use anything else for manipulation of files
This will also now verify while transferring files
check>

memory.
on dislc.

(wi lh CRC

This is CCP for CP/M written in Z80 machine langua9e that allows
me to see what user level I am on at all times. The AO> or AS>

indicating the user level. Also there is the DIR *·* S command
that displays only system files. I think that probably one of the
better features is that wh~n, let's say, you're on user level 6
B: drive, and you type in STAT, now STAT 1s not on user level 6
but only on drive A: level 0, this CCP will search level 6 B: ,0
B: and then default to A: level 0 to access STAT. Not bad for a ..
dumb FREE program. It also has other features.

Most of these programs 1 enjoy using very much. When you're tied into one
of these BBS systems you also qet the feeling that you're all worlclng together
to help each other out. This is why the Sorcerer User's groups were formed all
over the world. The more we can participate and ""communicate"" between our­
selves the better off we shall all be. Remember what the CP/M user's group is
doing, we should be that close knit as well.

by: H.A. Lautenbach

Further Glimpses at EIMONl b v : H . A. La u t e nb a c h
Page I 13

Many are wondering about what's so special about the New Monitor revision
by Walter Blady. For many it will be like breathing in new life into your
Sorcerer and also your own programming style.

It has not been ment1oned before, but another feature that this Monitor has
that is a real treat, is that the serial port now becomes a true serial port for
300 or 1200 baud modems and also the SMODEMX program. The toggling of that Bit
associated with the keyboard scan routine no longer poses any problem. We are
getting many phone calls Clong distance no less asking some more complea quest­
ions>. I would like to take some time to answer some of th~se in this newsletter.

Questions Answers

========= =======
Availability No, not though PORT FE.

From whom if not PORT FE H.A. Lautenbach same P.O. Box as PORT FE

How much does it cost. $65.00 + 5.00 Postage U.S. Funds

Is it compatible with the :No, direct monitor calls made by the WPP ROM PAC
'WPP ROM PAC

What happens to the old .You can pass them on to n~ver never land OR
Monitor chips. you can stack the NEW Monitor EPROMS on top of

the old ones and have both monitors.

Is it compatible with the
ROM PAC BASIC

What terminal does it
emulate

:Yes fully, no bugs detected.

:None specific

With the reverse character :Yes some of them (not all>
set do I still have my
graphics.

Is the Monitor Jump table
compatible with the old
Monitor jump table.
What have I lost in the
Monitor.
Is it CP/M compatible

Will my speed increase
in CP/M.

Will all software that
requires cursor
positioning work.

Was anything else changed

Has a CP/M boot been
provided.

How did you get it all
that into the monitor.

:Yes fully (1st 16 are identical)
Plus 18 more added.

:Batch,Test & Fil~s commands

YES (complete!y, with keyboard status
check routine !or CP/M)
Depends on how efficient your present
status check is. Lifeboat CP/M 1.4 and Z.Z
are definitely improved Cif original>
Also Micropolis CP/M can be improved.
Yes, as far as we can determine.
As long as it has an install program or
system parameter file.

YES many BUGS have been corrected, some
not even mentioned ever before.
No, There are too many boot addresses that could
and are being used on different disk systems. w~

thought it wiser not to include this function.
With a lot of squeezing and the makinq of certain
routines more efficient.

EXMONZ - QUESTIONS & ANSWERS Continued. Page I 14

Can I control the Sorcerer
from a remote ASCII
terminal.

Can I control it via a
modem at 300 baud.

Are all the new jumc
vectors new routines.

Is it compatible with MP/M

Yes, from both the Sorcerer and the keyboard or
terminal that is hooked up via the serial port
port on the Sorcerer. (300 or 1200 baud)

Yes, even at 1200 if you have the modems.

It's about 50/50, some of the jump vectors were
brought out to be more accessable to the user.

We don't know. should be.

Can I use all my grachics
if I want to.

Yes if you want. Reverse ASCII would be
overwritten though and would have to be recalled.

Is the reverse ASCII under
keyboard control.

Yes, you use the ESC key and a number.

~hat about updates. What
if there are still bugs.

'If' there are any, only a small handling charge
will get you revised EPROMS.

Are there discounts for
user groups.

Yes group purchases will be given discounts.
5 to 9 sets 15% ,10 or more 20~

There are probably some that I've missed, but if any of you have more
questions, Please direct all enquires to me personally. Most of your auestions
are answered with the documentation that comes with the EPROMS.

For most of you there is a hardware change requiring you to change the
ROM/EPROM jumpers to that of the standard 2716 EPROMS and thats all th~re is to
it. In my personal opxnion <BIASED OF COURSE) I really think it's the best thin9
that has happened to the Sorcerer since it was first sold.

I do recommend that everyone needs this capability, for the multitude I 'a
sure that most of you have done without long enough, The added frills are nice.

PART II The SIO Prograaaing

The Z-80 SID contains B registers that are written to in order.

To initialize: All write registers, with the exception of register '0' are Z
byte instructions. The first byte signifies the register, the second, is the
data being sent to it. Upon reset, write register '0' is entered. A single bvte
here in register '0' takes you through the other registers.

The next page shows all of the reqisters and the mean1ng of each bit
each register <0-7). This month please digest this information so that
month, when you are given a simple Hard & Software implementation. you will
a better understanding of how versatile this chip really 1s.

in
next
have

I am takinq this all very slowly so that we don't lose too many people
along the way. This can become very involved during the set up procedure.

Next month <August issue this will be continued>.

by: Brad Fowles

Page t 15
SIO REGISTER INFORMATION

WRITE REGISTER 0
Dll06 D5 04 D3

0 0 0
0 0 1
0 1 0
0 1 1

I
1 0 0
1 0 1
1 1 0
1 1 1

D2 D1 00
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
NULL CODE

REGISTERO
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER&
REGISTER 7

SEND ABOR T CSDLCl
RESET EXT.
CHANNEL R
RESETRxtN
RESET TxtN

STATUS INTERRUPTS
ESET
TON FIRST CHARACTER
T PENDING

ERROR RESE T
RETURN FR OM INT CCH·A.ONL Yl

0 0 NULLCODE
0 1 RESET Rx CRC CHECKER
1 0 RESET Tx CRC GENERATOR
1 1 RESET SENDING CRC/SYNC LATCH

WRITE REGISTER 2*

vo
V1

~---'V2

L-----V3 INTERRUPT
L---------V4 VECTOR

L-------V5
L-----------V6

L-----------V7

•CAN ONLY BE WRITTEN INTO CHANNEL B

WRITE REGISTER 4

l
0 0
0 1

0
1

PARITY ENABLE
PARITY EVEN/ODD

0 0 SYNC MODES ENABLE
0 1 1 STOP BIT/CHARACTER
1 0 1% STOP BITS/CHARACTER
1 1 2 STOP BITS/CHARACTER

0 0 8 BITS SYNC CHARACTER
0 1 16 BIT SYNC CHARACTER
1 0 SDLC MODE (01111110 SYNC FLAG)
1 1 EXTERNAL SYNC MODE
X1 CLOCK MODE
X16 CLOCK MODE
X32 CLOCK MODE
X64 CLOCK MODE

WRITE REGISTER 6

lD71 061051041 D3ID2ID1TDOl

IL:: SYNCBITO
SYNC BIT 1
SYNC81T2
SYNC81T3
SYNCBIT4 •
SYNCBIT5
SYNC BIT 6
SYNC BIT

• ALSO SOLC ADDRESS FIELD

WRITE REGISTER 1
ID71Delo5ID4Io31D21D~~

~
EXT. INT ENABLE
Tx INT ENABLE
STATUS AFFECTS
ECTOR (CH·B.ONL VI

0 0

0 1

1 0

1 1

v
Rx INT Dl SABLE

Rx INTON FIRST CHARACTER
ONLY
INTONAL l Rx CHARACTERS

FFECTS VECTOR)
l Rx CHARACTERS

DES NOT AFFECT

(PARITY A
INTON AL
(PARITY 0
VECTOR)

WAIT/REA DY ON R/T
EAOY FN

DY ENABLE
WAIT FN/R
WAIT/REA

WRITE REGISTER 3

lo71 D6losl o41 o31 021011 oo I
L:= Rx ENABLE

SYNC CHARACTER
LOAD INHIBIT
ADDRESS SEARCH
MODE ISDLCI
Rx CRC ENABLE
ENTER HUNT MODE
AUTO ENABLES

0 0 Rx 5 BITS/CHARACTER
0 1 Rx 7 BITS/CHARACTER
1 0 Rx 6 BITS/CHARACTER
1 1 Rx 8 BITS/CHARACTER

WRITE REGISTER 5

0 0
0 1
1 0
1 1
DTR

Tx CRC ENABLE
RTS

L-----mn:JcRC·18
1------Tx ENABLE

~-----SEND BREAK
Tx 5 BITS (OR LESSI/CHARACTER
Tx 7 BITS/CHARACTER
Tx 6 BITSJCHARACTER
Tx 8 BITSICHARACTER

WRITE REGISTER 7

ID7l D6ID5TD4TD3TD21Dt IDOl

TL= SYNC BITS
SYNCBIT9
SYNC BIT 10
SYNC BIT 11
SYNC BIT 12 •
SYNC BIT 13
SYNC BIT 14
SYNC BIT 1

•FOR SDLC IT MUST BE PROGRAMME
TO "01111110" FOR FLAG RECOGNIT

rmumm~
A NEW MONITOR

FOR THE SORCERER
At last, here's a revised version of Exidy's operating
system that has full terminal functions. EXMON2 will
increase the flexibility of your Sorcerer computer and
open the door to many excellent software applications
that require special terminal features.

These New EXMON2 routines can be used directly
from your Sorcerer keyboard and are easy to use in
BASIC programs:

• Direct cursor positioning
• Clear to end of line
• Clear to end of screen
• Delete line
• Text highlight on/off
• Reverse ASCII characters

EXMON2 has many additional features that give your
Exidy Sorcerer even greater flexibility:

• Define and reserve top of screen
• Search memory for hex or ASCII string
• Parallel and serial printer drivers

with or without line feeds
• A properly working serial port

(for modems, etc.)
• A f-a-s-t keyboard status routine

that's CP/M compatible
• And there's more ..•

Each EXMON2 set comes complete with two burnt-in,
fully-tested Eproms and an accompanying user's
manual with easy-to-understand installation instructions.
1 set (2 Eproms & manual) ... $65.00 U.S. +postage*
Group t (5 to 9 sets) ... $55.25 U.S. +postage*
discounts f (10 or more) . . . $52.00 U.S. + postage •

*Add $5.00 U.S. with the first set, $3.50 U.S. with each
additional set for postage and handling.

Please make cheques payable to:
H.A. LAUTENBACH, and mail to: P.O. BOX 1173, STN. B,

DOWNSVIEW, ONTARIO, CANADA M3H 5V6

•••••••••••••••
• TO ORDER EXMON2: •
• __ Please send more information on EXMON2 .

I have enclosed my certified cheque/money order
• for$; please send me __ EXMON2 set(s) .

• Company/Club ___________ _

• •
Name _______________ _

Address _____________ _

• • • • • • • •••••••••••••••

Page I 16

.. SORCERER USERS' CROUP <TORONTO> P~ge 1117

Membership Apolication Form Covering Jan. to Dec 1952

Member$hip to the group is not restricted to the TORONTO area.
willing to participate are invited to jo1n.

All persons

As a member of the Sorcerer Users' Group <Toronto>,
membership fee and agree to the following Terms.

I enclose the annual

1. That I will not, without the authorization of the board of directors,
represent myself or take any act1on as agent, or representative or become spokes­
person of the group.

2. That I will not use any software obtained from the SUGT library for any
commercial purpose or financial gain. The library shall be available to me should

wish to obtain programs donated by other members. These programs shall not be
distributed without the owners consent and/or the consent of the board of excecu­
t.ive officers.

3. That have the right to vote for the officers and directors of tht!
organizat1on at the annual general meeting.

4. That any breach of the above conditions and any other restrictions that
the Officers of the Club may 1nvoke in the future on my part may result in
suspension or termination of my membership without refund.

A:n:nua.l MelUbership Rates (Jan - Dec)

Canadian- $15.00 Cdn -PLUS S6.00 Postage
U.S.& Foreign SlS.OO \ U.S Funds) PLUS $10.00 Postage

Payable to - SORCERER USERS' GROUP <TORONTO) - by Cheque or Money Orders.

The SUGT program library is available to all members in the following manner.

You may send $6.00 + $1.50 postage for each volume as they become available
and we shall supply the cassette/s. Program cassettes shall be sent via Air Mail.

All issues of PORT FE shall be mailed first class, in the case of non local
issues, they are mailed via Air Ma1l. Past issues of PORT FE are only availbble
for the current calendar year. Contact the editor, he will advise the amount of
payment for previous ;ssues.

NAME (p r l n t) : ...
ADDRESS: .

CITY
POSTAL CODE:

TELEPHONE: Res ... Bus

Payments enclosed <membership>:. Library tape/s Vol 1 or Z

Signature:.

Please list the type of equipment you are using etc .. .
Sorcerer size. 8 ... 16 ... 3Z.. 48 ... other 5100 ... Graph board
Disk system Micropolis.... Discus Exidy. other ... Size ..
Other Equipment

If you belong to any other Sorcerer Users' Group please list it below.

	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_01
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_02
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_03
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_04
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_05
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_06
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_07
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_08
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_09
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_10
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_11
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_12
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_13
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_14
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_15
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_16
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_17
	Port FE - 1982, 06 - June and July - Technical tutorial about the Rompac Basic by RCL. Part 1_Page_18

