Sorcerer Users' Group (Toronto) Newsletter
200 Balsam Ave,, Toronto, Ont., M4E 3C3
Volume 1 Number 6

August 1980

EDITOR'S TURN

The way that I presently feel towards a computer is vastly different from
the way I have ever felt before or even thought that I would feel., Having done
some programming in Fortran at the University of Toronto and worked for a while
as an operator/programmer trainee for IBM, I had come to feel the same way about
computers as I feel about a dry cleaner. You send the stuff out, 2 few days
later it comes back and either you're pleased with the results or you're not. I
never touched it, it never touched me.

When I got my Sorcerer, it was much the same in many ways. There it sat on
.the table in front of me, I typed in a few programmes from a magazine, ran them,
fixed up the bugs and felt pleased that the programme was (seemingly) running
correctly, I didn't touch it (emotionally speaking) and it didn't touch me.
Here's this digital electronic machine sitting in front of me, touted by the
media as being capeable of acting as an extension of my mind, but I was
completely cut off from it both intellectually and emotionally. There was no
relationship, no rapport, no communication., AHA! No communication,

In effort to resolve this vacuum, I started working extemsively with the
thing, trying to get to know it better, A rash of BASIC programmes started to
break out. Wonderful, Now my computer seems to be talking back to me, giving me
information that I'm interested in, even the emart ass remarks that I taught it.
Something was still missing, however. It was now soewhat like a tape recording,
just a carbon copy of my thought processes, no personality. I want to know where
its eyes are, its ears, its mouth, its brain.

Months later, after having disected the monitor ROM like a Foremsic
scientist, I finally started to feel more like I was commnicating with an
intelligence. Using 2-80 assembly language, monitor subroutines, port I/0 and
the video DMA, I could really get into things, Put this in this part of the
brain, store that away there, diddle this thing across the screen, filter input,
synthesize output, live, breathe, thinkil! (Dramatic eh!)

Now I have to deal with problem number two, tedium., In getting all this to
happen, I've become totally exhausted. LD this, EXX that, PUSH of £, POP out of
view, There's got to be an easier way. Interpreters are too slow and
restrictive, assemblers, while faster, more efficient and conservative of memory
are too tedious to programme. Isn't there something that strikes a happy medium?
YES! COMPILERS!

Wait a minute now, I've worked with a compiler before. Fortran., Hate it.
Too much is handled internally, This thing was written by engineers, It only

Port FE wvol. 1 no. 6 Page 1

T— — e ————— —— — i (AT CIING Wty | eett— S s | RNy GU— — e — PO CH—— W_——" S YRADEIR.. Gt e—— SOrRIme | e t——s S O—m e—m—m—m e e s e wemm—— T T,

does what engineers want it to do, It doesn't understand "personal"™ computing,

- It only wante to do Pourier transforms, Simpson's method of derivation, dx/dy,
split that graph, take smaller sample areas, extrapolate that curve, mean
deviation, linear regression, least squares fit...

COBOL! Come. Join our team and we'll show you how you can become a
chartered accountant through the wounderful world of computer programming. Well,
next time I have a ledger balance sheet I can't balance, I'l1l give it a try,
until then...

APL! 2% '"D))((':s -*/))K@%~. HUH???

PASCAL, Well everybody's talking about it these days. Let's get out those
old magazines that had a course on Pascal, This looks good, Straight-forwvard,
structured programming. Input this, print that, add these, BEGIN here, END
there, state this PROCEDURE. This is starting to look more like a fancy
interpretive language every time I read it,

Cet it together now. I only have 32K of RAM and CP/M. There must be
something up and running for CP/M users. Its the software bus didn't you know.
Yes, there must be something that runs on CP/M, that's affordable, that runs in
32K, that doesn't require you to sign a license giving the implementer all your
rights and every second male child for using the damn thing (definitely an
upcoming editorial). There's one. Let's give this thing a try., HMMM...."C",

(to be continued)

As 1 mentioned last month, you can greatly increase the power and
flexibility of BASIC programmes by interfacing them with machine language
subroutines using the USR function, A slight problem exists, however, on where
to place these routines in memory so that they don't get trampled on by BASIC
during execution, Remember, by defsult, BASIC will use all the memory it desires
of whats available as a big scratchpad. It's really a pig., Steve Dicker's
article in last month's issue is one very good way to handle this problem,
Another exists which is a little less cumbersome in some ways and more in
others, It's just a matter of which is more comfortable for you to work with,

The top of the BASIC scratchpad area (which is also the top of the memory
area that BASIC uses excepting a 256 byte stack) is pointed to in the BCA ~
BASIC Control Area. Recall from the April issue of PORT FE that location 145H
(325 dec) points to the bottom of the scratchpad space, location 192H (402 dec)
points to the top of the scratchpad space, and location 1A6H (422 dec) points to
the current location in the scratchpad for work. When you turn on the machine,
this is set so that 1A6H=192H and 145H=192H~50. Location 192H (top of memory for
BASIC) is set just below the BASIC stack which is just below the monitor stack
w:ich is just below the MWA. That is, in a 16K machine, the memory map looks
likes

Port FE wvol. 1 no. 6 Page 2

Top of RAM 3FFFH

— 3F91H - 3FFFH MWA
3F00H - 3F90H Monitor Stack
3E00H -~ 3EFFH BASIC Stack
xxxxH - 3DFFH BASIC scratchpad area

When you start up a BASIC programme, the very first statements can alter the BCA
to start the scratchpad lower down in memory., This will leave an n-sized buffer
area of memory free for you to put in your machine language subroutines, The map
will now look like:

Top of RAM 3FFFH

3F91H - 3FFFH WWA

3FO0H - 3F90H Monitor Stack
3EQ0H - 3EFFR BASIC Stack
yyyyH - 3DFFH your M/L routines

xxxxH -~ yyyyH~l BASIC scratchpad area

All you have to do is POKE the three locations with the address yyyyH - 1
(before any CLEAR statements are made) and put your M/L routines at location
yyyyH and up. You can reserve the exact space you need for these routines
since you know how much memory they will take up.

The drawback to this method is that addresses will have to change to
accomodate different machine sizes, This can be overcome with a few statement
lines which can calculate the offset addresses for any size machine. When you
turn the Sorcerer on, it seeks out the top of RAM in order to place the MWA in

~ the proper location. This location (top of RAM) is stored for reference at
locations FOOOH and FOOlH., Therefore, your programme can find the top of RAM
in in any Sorcerer with the single statement:

TOR = PEER(-4096) + 256 * PEEK(-4095)

Since the MWA and the two stack areas are always a constant 512 bytes, then the
location to put your routines at (le. yyyyH) is given by the statement:

YYYY = TOR - 512 - (the size of RAM needed for your routines)

Now POKE the three addresses in the BCA with YYYY - 1, use your CLEAR command
as the LAST command of the section just before the main programme and you're
almost away.

Another problem exists and that is that your M/L routines have to be
relocatable. Otherwise, all the JP and CALL addresses will be wrong. In order
to have a fully self-contained BASIC programme, you should store the M/L
subroutine in DATA statements and on start-up, POKE them into memory. In order
to properly relocate the code, I use the following method,

Any JP and CALL addresses are spacified as an offset from the beginning of
the M/L block area. That ies, the address of the CALL or JP is stored in the
DATA statement ast

_— ~~(JP or CALL address - beginning of block)

Port FE wvol, 1 no. 6 Page 3

-~

Yes, that is a big "MINUS" sign in front. That is so that when BASIC is reading
data to poke into memory, it can determine offset addresses from the rest of the
regular code. B8ince the only thing that is different from one machine to
another is the start block address of the subroutine area, this can be added
back in at execution time,

A “dummy" programme to do this would look likes

XX10 RESTORE XX90:1MLP=YYYY

XX20 READ CODEsIF CODE=9999 THEN X100

XX30 IF SGN(CODE)=-1 THEN CODE =ABS(CODE)+YYYY
XX40 POKE MLP,CODEsMLP=MLP+1

XX50 GOTO XX20

XX90 DATA 196,45,110,-67,222,999%9

X100 (start of main programme)

then when calling the routine in your programme using the USR function, the -

calling address is YYYYH for any machine,

I1f it looks a little troublesome, belive me, its not really, Just do a few
small test programmes for practise and you will see that it is quite straight
forward once you get used to it.

- Paul and Robert are still working on the modems, They are presently getting
sporadic readings. They hope to have the bugs ironed out soon.

- however, Universal Data Systems just announced a new modem in the last issue
of BYTE which is FCC approved and operates at 1200 baud via a direct
connection for $295.,00 US. It may be worth closer investigation,

- next meeting is THURSDAY AUGUST 14, 1980 at my place, 200 BALSAM AVE. TORONTO
at 7:30 pm,.

P
e

e

’ e

By car:-

take the GARDINER EXPRESSWAY Eastbound to the end uhi‘éh tﬁrm into
LAKESHORE BLVD. Continue on LAKESHORE to the end whikh; tntns {nto WOODBINE
AVE. Turn right (EAST) at the first light which is QUEEN 8T, Take QUEEN ST
East about three or four stoplights to BEECH AVE. Turn left (north) on BEECH
and go up the hill for 2 blocks which is the intersection of BEECH and BALSAM.
My house is on the KORTHWEST CORNER of that intersection,

By TTC:-

d take the SUBWAY to COXWELL STN and get the COXWELL S0UTH BUS. The bus
will go down to QUEEN 8T and come back up KINGSTON RD. Get off at BEECH and
walk 1 bloek south to BALSAM AVE. My house is on the NORTHWEST corner of that
intersection,

Port FE vol. 1 no, 6 ‘ Page 4

*d

