'9,.,.... =5

_Sorcerer Users” Group (Toronto) Newsletter

200 Balsam Ave., Toronto, Ont., M4E 3C3
Volume 1 MNumber 5
July 1980

EDTTOR"S TURN

This month I have not written a critical editorial essay for several
reasons, the first being that I haven™t had time to prepare anything. Actually,
I did have something small prepared and I had 75% of this newsletter typed into
Duncans computer. But some stray electrical charge wandered along (its not the
first time on this system) and blew the whole thing. I absolutely refuse to type
the whole thing in again and anyhow, it wasn”t very interesting. You’re not
missing anything. However, next month I plan on doing an article which discusses
the value and uses of several different programming languages. I state quite
clearly, though, that I am not an expert on all programming languages nor that I
use all of them extensively, if at all. They tend to fall into classes of style
and usage, however, and can be discussed from that viewpoint.

I would again like to urge everybody to submit articles for the HARDWARE
and the EQUIPMENT REVIEW columns. I would like to see some articles on minor
modifications to the Sorcerer or peripheral equipment which is easy to perform
and is interesting and/or useful. I would also like to urge everyone to make
whatever donations you possibly can to the software library. There are currently
many competitions going on with some of the games from the library and it all
seems to be working out great.

Over the last few months, I have been showing how to do some very
interesting and useful I/O routines for both the keyboard input and video
output. This month, I will conclude that-series with some programmes that allow
you to test for keys using the keyboard I/0 port.

All I/0 on the Sorcerer is done using port FE (255 decimal). By testing the
particular values on that port, it can be determined which key on the Sorcerer
keyboard is physically being pressed. This is not the same as testing for its
ASCII value. The ASCII values that are assigned to keys are arbitrarily set by
the keyboard input logic routines in the EXIDY monitor ROM. There are always two
ways of handling I/O in any system - the physical and the logical. They are very
different. When pressing a key on the keyboard, the monitor routines test for
physical occurrences which are determined by the changing values (bit patterns)
on the ports and then logically assign some standardized value to them (for
meanings” sake) such as an ASCII number. However, you don"t have use that logic
if you don"t want to. The logic used in the monitor ROM is very well written and
imperative for the general usage of the machine but it is not necessarily so for
many specific applications, such as when speed or constant timing is critical.
In these cases, you can test for physical occurrences yourself and write your

Port FE vole 1 no. 5 Page 1

own logic to suit your own needs.

In order to understand the physical keyboard set-up a little better, turn
to the keyboard schematic in the Sorcerer Technical Manual (if you have one). If
you don”’t have a technical manual, refer to Table 1 in this newsletter. The
keyboard is a matrix or grid system which is tied into the input and output
lines of port FE, It isa 16 x 5 = 80 key grid which uses the 5 lower bits of
each of the input and output sections of the port. When you send a particular
value on the output section of the port, it turns on one of sixteen lines. This
line is connected to 5 keys on the Sorcerer. When you press one of these 5 keys,
it completes an electrical connection which is detected by the input section of
the port and can determine specifically if a particular key is on (pressed) or
off (not pressed).

The output section operates a little differently from the input section.
The line of 5 keys you want to test for goes out as a value which is one of the
line numbers (0-15). (Note: the numbers listed beside the lines of the output
"chip in the schematic are the pinout numbers, not the line numbers. Thus, the
BASIC command OUT 254,0 would activate line 0 of port FE and OUT 254,8 would
activate line 8 of port FE. The output section, then, is value patterned. But
the input section is bit patterned. That is, one of the keys will turn on one of
the 5 bits, 0-4. A very important note to remember is that the Sorcerer has
inverse logic, so that an "on" bit is a zero and an "off" bit is a one.
Therefore, if no keys are pressed, then all 5 bits will be ones. If one of the
keys is pressed, it will appear as a zero in that key position. The values for
any one of the 5 keys on any line will then be:

Binary Bex Decimal

11110 1E 30 -
11101 1o 29

11011 1B 27

10111 17 23

01111 oF 15

Now we can make a test to see if a particular key is being pressed. Let’s
test for the RUN/STOP key. From the schematic or Table 1, we can see that the
RUN/STOP is on output line 0 and on input bit 0. I will write this from now on
as KEY(out,in) making the RUN/STOP key printed as RUN/STOP(0,0). In Z2-80 this
would look likes

TEST XOR A mmake Acc.=0
our (OFE),A ;turn on line 0 of port FE
IN A, (OFE) :get input from port FE
J? Z,R/S ;90 if RUN/STOP pressed
NOSR/S sservice routine for case of
$RUN/STOP not pressed
R/S sservice routine for case of
s RUN/STOP pressed.

Now, last month I said that this could be done with ROMPAC BASIC using the
OUT and INP commands, but that was a mistake. It cannot be done from BASIC for
this one simple but irritating reason. BASIC takes the opportunity between
statements to do a quick check of the keyboard to see if the user wants to abort

Port FE vol. 1 no. 5 Page 2

GG I S Gy GEEIRERE GEISTIUE- (RRTSIRS PURTD GERMRRSY: SIS GGl G em—— RIS (ARSI, " PSSO WTARy IS Gy, IS, i, [, IS S, A IR TS em—— e—,——me e e e e e——rormmrmmm

the programme. The aborting keys reside on line 0 and, therefore, between the
OUT and the INP commands, the BASIC PAC always resets the output section of port
FE to 0 which makes the test useless for all but the test for line 0 keys. A
machine language subroutine will then have to be set up to handle this. We”ll
make this routine flexible so that it can easily be changed from BASIC to test
any bit on any line. We”ll start the routine at address 0:

Add Code Label Mne Oper Remarks
00 21 20 00 TEST ID HL,0020 ;FLAG STGE ADD.
03 36 00 b (HO),0 ;CLEAR FLAG
05 3E 00 ID A,LL ;LI=LINE #
07 D3 FE our (OFE),A ;TURN ON LINE LL
09 DBFE IN A, (OFE) sGET INPUT BITS
0B CB OO BIT BB,A sBB=BIT #
op <0 RET Nz sNZ=NOT PRESSED
0E 3601 D (HL),Ll sSET FLAG FOR PRESSED
10 ©9 RET sBACK TO BASIC

Now from BASIC we can first POKE the output section line number we want
into location 6 and the proper code for the BIT test into location 12 (0CH),
then call the subroutine using the USR function. When it returns, we can PEEK
location 32 (20H) to see if the key was pressed. We can now write a general
purpose BASIC subroutine to do this called SCAN. When we call this subroutine,
we will pass it two arguments, LINE which will specify the line number 0-16 and
BIT for the bit number 0-4.

XX00 REM: SCAN SUBROUTINE

XX10 RESTORE XX90:REM RESET DATA TO LINE XX90
XX15 REM GET BIT CODE FOR BIT POSITION
XX20 FOR I=0 TO BIT:READ CODE:NEXT I
XX25 REM NOW POKE LINE # INTO IOC. 6
XX30 POKE 6,LINE

XX35 REM AND BIT CODE INTO 12

XX40 POKE 12,CODE

XX45 REM NOW CALL M/I SUBROUTINE

XX50 POKE 260,0:POKE 261,0: M=USR(0)
XX55 REM ('HEBK FLAG S'E’I'US -

XX60 IF PEEX(32) THEN PRESSEIPI:REIURN
XX65 REM ELSE KEY NOT PRESSED

XX70 PRESSED=0:RETURN

XX90 pATA 71,79,87,95,103

When this subroutine returns to the calling statements, if PRESSED=0 then
the key was not pressed, else it was pressed., This routine now has a constant
time limit which is the same for every call. Neither the processor nor the
programme is dependant upon operator response time or the length of time that a
key is kept down. You do not have to relocate and alter large blocks of code
either. If you are using it for video games, then motion will be £luid across
the screen. Another very useful function for this method of key testing is for a
true randomization for Sorcerer. You can now actually measure the operator
response time to use as a seed or you can put a RANDOM statement in a loop which
continues to execute until the operator responds and releases the key. It would
be virtually impossible to duplicate a response time at processor speeds.

Port FE vol. 1 no. 5 Page 3

¢ ¢

Here’s a routine in BASIC that will test the 4,5 and 6 key on the keypad
that could be used to move a cannon left (4), right (6) or fire (5). For the
sake of convenience and clarity, I will give the subroutines names instead of
line numbers. SCAN is the testing routine given above, LEFT is a routine that
points the cannon left, RIGHT points it right and FIRE fires the cannon. Of
course you would need subroutines to count shots and score but these are left
out here. Qur routine is called CHECK.

X010 REM TEST THE 4 KEY

X011 LINE=13:BIT=2:GOSUB <SCAN>
X020 IF PRESSED GOSUB <LEFT>
X030 REM TEST THE 5 KEY

X031 LINE=14:BIT=2:GOSUB <SCAN>
X040 IF PRESSED GOSUB <FIRE>
X050 REM TEST THE 6 KEY

X051 LINE=14:BIT=3:GOSUB <SCAN>
X060 IF PRESSED GOSUB <RIGHT>
X070 REM ALL SCANNED SO DO AGAIN
X080 GOTO X010

I hope you have found these I/0 routines useful. It is my feeling that with
them, you can far surpass the I/0 abilities and facilities of just about any
other micro on the market., Start integrating some graphics routines with these
and really open up some new fields for research and enjoyment.

BASIC is a fairly good language for small programme development on home
and/or personal oriented microcomputers but it has some very severe limitations
as we have seen over the last few months. It is not possible to gain a high
degree of flexibility and control without introducing machine language
subroutines. However, when machine language subroutines are integrated into the
operating framework of BASIC, its basic power is greatly multiplied. Finding a
comfortable and safe place to put these subroutines is another problem
altogether,

Steve Dicker has submitted a very good article and programme on one method
of dealing with this problem which is appended to this newsletter. I suggest it
be read carefully to understand its full potential. Next month, I will show
another method to handle this problem. With these routines and the I/0 routines,
there will be no reason why your programmes can”t run as smoothly and look as
professional (if not moreso) than that which comes out of large software houses.

The next meeting will be held on THURSDAY JULY 10, 1980 at my home 200
BALSAM AVE. TORONTO at 7:30 pm.

By car:-

take the GARDINER EXPRESSWAY Eastbound to the end which turns into
LAKESHORE BLVD., (ontinue on LAKESHORE to the end which turns into WOODBINE AVE.
Turn right (EAST) at the first light which is QUEEN ST. Take QUEEN ST East about
three or four stoplights to BEECH AVE. Turn left (north) on BEECH and go up the
hill for 2 blocks which is the intersection of BEECH and BALSAM. My house is on
the NORTHWEST CORNER of that intersection.

Port FE vol. 1 no. 5 Page 4

By TIC:~
take the SUBWAY to COXWELL STN and get the COXWELL SOUTH BUS. The bus will
go down to QUEEN ST and come back up KINGSTON RD. Get off at BEECH and walk 1

_— block south to BALSAM AVE, My house is on the NORTHWEST corner of that

intersection,

TRARIE 1
The following table lists the KEY(line,bit) in vertical groups of 5 from
left to right across the keyboard. Note that the key symbol given is merely an
identification of the physical key on the board and has no actual meaning other
than that.
ST0P(0,0) GRAPH(0,1) CTRL(0,2) SHFT LOCK(0,3) SHIFT(0,4)
CLEAR(1,0) REPT(1l,1) SPACE(1,2) TaB(l,3) ESC(1,4)

X(2,0) z(2,1) A(2,2) Q(2,3) 1(2,4)
C(3,0) D(3,1) 8(3,2) W33 23,4
F(4,0) R(4,1) B(4,2) 4(4,3) 3(4,4)
B(5,0) v(5,1) G(5,2) T(5,3) 5(5,4)

1(6,0) N(6,1) H(6,2) ¥(6,3) 6(6,4)
R(7,0) I(7,1) J(7,2) U(7,3) 7(7,4)
+(8,0) L(8,1) 0(8,2) 9(8,3) 8(8,4)
/(%,0) «(9,1) 2(9,2) P(9,3) 0(9,4)
\(10,0) @(10,1) 1(10,2) [(10,3) 2(10,4)
RUB(11,0) RETN(11,1) LF(11,2) ~(11,3) =(11,4)
KEreRD |
+(12,0) *(12,1) /(12,2) ~-(12,3)
0(13,0) 1(13,1) 4(13,2) 8(13,3) 7(13,4)
«(14,0) 2(14,1) 5(14,2) 6(14,3) 9(14,4)
=(15,3) 3(15,4)

Port FE vol. 1 no. 5 Page 5

cegom

BASIC TO ZO0 AGSEMELY LANGUAGE INTERFACE

For those of uwou who have s Sorcerer Software manuals wou

‘alreads know that there are only two rlaces to locate machine

languadge subroutines which wou intend on interfacing to &
BASIC #Frodram. You can either rlace the subroutines in the
first 256 butes of memorws or locate them in the BASIC free
srace at the end of gour BASIC rrodram. The first method rlaces

8 size limitation on wour subroutines while the second is

riskgs because the subroutines mas be overwritten when sou are
editind or urdating wsour BASIC rrodgram. I recently discovered
& third method of locsting machine landusse subroutines which
has none -of the obJectionable aualities of the tLlwo diven
above., You may allocaste ss much memors ss sou wish for sour
machine landuadge subroutines and sou can rest assured that
thes will remain safe throush &ll sour long hours of debudging
the BASIC rortion of wour rrodgram.

Here’s how wsou do it. Firsts decide how much srace sou

~are doing to need for uwour mschine lsngusse subroutines. Add
“the reauired number of bstes to 01DSH and add 1 to this sum.

For examrley if the subroutines recuired 200H twstes» gour
calculation would be!

01D5H
+ 0200H
1 1

02D4H

Now g0 into the monitor and ENTER location 14%H. Ture in the
two bute sddress Just caslculsted (remembering to reverse the
order of the butes). Using the sbove examrle!

0149% D6 03 (CR)

" Nexty ENTER 2 0 into location 30SH., These numbers maw 3lso be

FPOKED in using PBASIC but I find il essier to do as described
above.

How return to & B&ASIC and enter the command NEW. These

- actions reserve the desired memors srace at locations 1D0SH

throush 304H, If wou now asKk for the amount of FRE srace
gou’ll fing that 513 butes of memors arrear Lo be wmissindg,

~ That isy 3 16K machine which normalls hss 15392 butes free

after a8 NEW now has onlw 15079 bustes free. Your BASIC rrodrams
will now start at location 3D6H and will never wslK over the
reserved srace.

MFlesse note Lhal the bste rrecedins the start of gour
BASIC rrogramming asres (st location 300H in this case) must be
kert 8t 8 value of 0. If wou start delling 38 SYNTAX ERROR
~message when wou irs to run sour rrodgram it means that wou
have either forsolten to clear this bute or have overwritten
it with wour machine landusdge subroutine. To det gour rFrosram
to run 38ll sou need do is clesar this bute adain.

When swou wanlt to save sour Frodgramy "ou can save tLhe
- machine landusdge snd BASIC rortions todether. Go bacK into the
monitor and sel locslions 149H and 144H bacKk to their cold
start values of IS and 01 resrectivels. Return to BASIC and
CSAVE' your rrograme. Eversthindg Trom 1I0SH to the end of wour
BASIC rrodgram will be saved as one unit.,

To reload the rrograsm sou must first so throush the
rrocedure outlined sbove for reserving memorws snd then merelw
CLOAD yvour rrodgram. If zou forget to reserve tLhe memorw before
loading the rrodgram then the BASIC will slter sour mschine
~ landuadge subroutine when it corrects the #rosram link rointers

sfter loading. Itl’s 5 dood ides Lo write down the address
where each of uwour rrodgrams start when sou ssve them in this
wag. Otherwiser unless wou alwaus reserve the ssme smount of
memorys sou won’t Know whatl sddress Lo losd into 147H when sou
are reloadind the rrogram.

, If wou have a BASIC rrodgram lhal was orisginaslls written
~starting a8t 1DSH which wou would like to slter to the formst
described asboves uwou can do it &8s follows. Go throush the:
_rreviously described rrocedure of reserving memors (don’t
- forget to zero the last bute of the reserved srace!). Then
- CLOAD the rrodram (using the fyll form of the CLOAD . command)
alt the start of sour BASIC srace. Using the sbove examrle
sgain and assuming uou were loading 3 rrosram cslled FRGMy sou
would enter? ' ' '

CLOAD FRGM 1 3D6
Once the Frogram is loadédv it maw be ssved as described
above. -

Welly that’s it. If anwsbods tries tLhis out and has ang
trouble or any interestindg uses for ity I’d arrreciste hearing
from sou. : Steven Dicker

